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Abstract. Parasite classification and identification are central to controlling parasitosis.
Traditional methods for identifying parasite species are based on morphological features, but
these are time-consuming and inaccurate, especially for cryptic species. The purpose of the
present study was to select molecular markers to promote the development of molecular
systematic for parasites. The internal transcribed spacers (ITS) of nuclear ribosomal DNA
(rDNA) falls in between 18S, 5.8S, and 28S rDNA sequences, including ITS-1 and ITS-2
sequences. Previous studies have demonstrated that rDNA ITS sequences provide useful
genetic markers for identifying parasitic nematodes. With the ultimate goal of controlling
parasite transmission, we identified Kalicephalus belonging to three species using ITS rDNA
genes. The ITS genes (750–797 bp) of 21 Kalicephalus belonging to 3 species were cloned
and sequenced. Intra- and interspecific identities were 98.4% and 80%–89%, respectively. The
phylogenetic tree reconstructed with the neighbour-joining (NJ) method revealed that congener
Kalicephalus form the same branch, which is far apart from other branches of other nematodes.
This is consistent with morphological classifications, demonstrating the accuracy of our
molecular method. This is the first report stating that ITS genes can be used to classify
Kalicephalus, and it lays the foundation for identification, molecular epidemiology, and
phylogenetics of Kalicephalus and related parasitic nematodes.

INTRODUCTION

Kalicephalus spp. are parasites that can
parasitize a broad range of snakes, as well
as humans (Chai et al., 2003; Santoro et al.,
2012). It is estimated that over 600,000 tons
of snakes are consumed worldwide, and
approximately 20 species of parasites are
derived from animal food (Fei et al., 2005),
increasing the risk of infection with
Kalicephalus and posing a threat to
human health (Li, 1991). The majority of
Kalicephalus infections cause symptoms
such as anorexia, dyspnoea, and dysentery,
and serious infections can be fatal (Shi,
2000; Gao, 2002; Andrei et al., 2010). Thus,

Kalicephalus infections can affect snake
breeding and lead to economic losses.

To date, there are only two reports on the
gene sequencing of ribosomal 18S and 28S
rDNA and the mitochondrial Cytochrome c
Oxidase Subunit 1 of Kalicephalus (Chilton
et al., 2006; Prosser et al., 2003). Surprisingly,
no Kalicephalus ITS sequences have been
reported, even though they are considered
useful for parasitic nematode identification
and differentiation.

Kalicephalus infections in snakes are
quite common and widely distributed
throughout China (Le-Van-Hoa et al., 1968;
Wang et al., 1992; Junker et al., 2009; Junker
et al., 2011); however, their prevalence and
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species identities in snakes in China remain
unclear. The objective of the present study
was to sequence ITS genes of Kalicephalus

spp. collected from snakes in Hunan province,
China, to establish an identification method.

MATERIALS AND METHODS

Parasites and total genomic DNA

isolation

Between June 2012 and October 2013, adult
Kalicephalus specimens were collected from
the viscera of various snake species from
Hunan, China. Subsequently, the adult
Kalicephalus from each host were washed
separately using physiological saline,
identified morphologically, fixed in 70%
ethanol (V/V) and stored at -20ºC until use.
Following the morphological identification
of Kalicephalus belonging to 3 species, 21
representative samples were selected and
used for ITS gene amplification and sequence
analysis. Total genomic DNA was extracted
from individual samples with sodium dodecyl
sulphate/proteinase K treatment, column-
purified (Wizard® DNA Clean-up, Promega),
and eluted into 50 µL water according to the
manufacturer’s recommendation.

Enzymatic amplification

Partial ITS sequence was amplified by
polymerase chain reaction (PCR) with
primers NC5 (5'-GTAGGTGAACCTGCGG
AAGGATCATT-3') and NC2 (5'-TTAGTTT
CTTTTCCTCCGCT-3') (Zhu et al., 1999).
These primers were synthesized on a
Biosearch Model 8700 DNA synthesizer
(Shanghai, China). PCR was executed in a
25-µL system composed of 10 mM Tris-HCl
(pH 8.4), 50 mM KCl, 4 mM MgCl2, 200 mM of
each deoxynucleoside triphosphate, 50 pmol
of each primer, and 2 U Taq polymerase
(Takara) in a thermocycler (Biometra)
under the following conditions: an initial
denaturation at 94ºC for 5 min, then 94ºC for
30 s (denaturation), 55ºC for 30 s (annealing),
72ºC for 1 min (extension) for 36 cycles,
followed by a final extension at 72ºC for 5
min. These optimized cycling conditions were
obtained after testing different annealing
and extension temperatures. Next, 10µL

(5–10 ng) of genomic DNA was added to
each PCR reaction. Negative sample (no-
DNA controls) was included in each
amplification run. Five-microliter samples
of each amplicon were examined by 1%
(w/v) agarose gel electrophoresis to
validate amplification efficiency. Positive
PCR products were immediately sent to
Sangon Company (Shanghai, China) for
sequencing from both directions.

Sequence analysis and phylogenetic

reconstruction

ITS sequences were separately aligned
using the computer program Clustal X 1.83
(Thompson et al., 1997). Pairwise com-
parisons were made of the level of sequence
differences (D) among and within the species
using the formula D = 1 – (M/L), where M is
the number of alignment positions at which
the two sequences have a base in common,
and L is the total number of alignment
positions over which the two sequences are
compared (Chilton et al., 1995).

Representative samples with available
ITS sequences were used for phylogenetic
analyses. The neighbor-joining (NJ) method
was used for phylogenetic reconstructions
(Felsenstein, 1995). NJ analysis was carried
out using the Dayhoff matrix model
implemented by MEGA 4.0 (Tamura et al.,
2007), and maximum likelihood (ML)
analysis was performed using PUZZLE 4.1
under the default setting (Strimmer &
Haeseler, 1996). The consensus tree was
obtained after bootstrap analysis, with 1,000
replications for NJ and maximum parsimony
(MP) trees, and 100 for the ML tree, with
values above 50% reported. Standard
unweighted MP was performed with the
Phylip 3.67 package (Felsenstein, 1995). The
phylogenetic relationship among cestodes
was performed using the sequences of seven
nematode species (Table 1) as the ingroup
plus the three mtDNA sequences obtained
in the present study, using one tapeworm
species (Dipylidium caninum, GenBank
accession number, AM491339.1) as the
outgroup based on ITS sequences. Phylo-
grams were drawn using version 1.65 of the
Tree View program version (Page, 1996).
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RESULTS AND DISCUSSION

Genomic DNA was prepared from 21
individual Kalicephalus obtained from 3
species (K. indicus, K. bungari and K.

brachycephalus; see Wu et al., 2001). Partial
sequences of the flanking regions of the
ribosomal spacers and complete 5.8S rDNA
were identical for all individuals. ITS genes
were amplified individually and subjected to
agarose gel electrophoresis. The amplicons
of all samples appeared as single bands
approximately 850 bp in length (Fig. 1).

To compare ITS sequence differences
among nematode species and assess the
magnitude of nucleotide variation of ITS
within species, ITS amplicons representing
different species were sequenced. The
obtained ITS rDNA sequences of Kalicephalus
samples were 750–797 bp in size. These
sequences contained K. indicus (KI1–KI7)
ITS rDNA sequences 764–773 bp, K. bungari

(KBU1–KBU7) ITS rDNA sequences 750–765
bp, and K. brachycephalus (KBR1–KBR7)
ITS rDNA sequences 793–797 bp. The
contents of each of the four nucleotides
varied, with A of 22.5%–24.53%, G of 24.53%–

25.55%, T of 29.18%–30.93%, C of 20.88%–
22.00%, and the same for A+T and G+C
(53.14%–53.86%).

Dendrograms based on ITS gene
sequences representing different isolates
aligned on an accordant length of 700 bp
and constructed using NJ with building
strategies and/or distance models were
identical or similar, with only small
discrepancies in bootstrap values (Fig. 1).
The phylogenetic tree consisted of a large
clade: K. bungari was sister to K. indicus

and K. brachycephalus, and they were far
apart from other branches of other parasitic
nematodes. The Oesophagostomum sp. ITS
gene sequence of was less similar to other
nematodes, suggesting that the ITS gene could
be an appropriate marker for the molecular
identification of nematodes species.

It is widely acknowledged that rDNA ITS
could be a useful genetic marker for variation
in taxa at the level of phylogeny because its
interspecies variation is much higher than
intraspecies variation (Liu et al., 2012; Ivica
Králová-Hromadová et al., 2011). The rapid
evolution of rDNA ITS regions made it
suitable to employ for phylogenetic

Fig. 1. Representative PCR products for a subset of the ITS rDNA genes of Kalicephalus from
Hunan, China.
Lanes 1–23 represent samples KI1, KI2, KI3, KI4, KI5, KI6, KI7, KBU1, KBU2, KBU3, KBU4, KBU5, KBU6,
KBU7, KBR1, KBR2, KBR3, KBR4, KBR5, KBR6, KBR7, positive control, and negative control, respectively.
The marker lane (M) contains a DL-2000 molecular weight standard (ordinate values in bp).

Table 1. Nematode ITS genes compared with Kalicephalus

Species (abbreviation) GenBank accession no. Host Reference

A. caninum JQ812694.1 Dog Lucio-Forster et al. (2012)
A. duodenale EU344797.1 Human Wang et al. (2007)
A. braziliense JQ812692.1 Cat Liotta et al. (2012)
U. stenocephala HQ262055.1 Island fox Nadler et al. (2013)
Oesophagostomum sp. HQ844232.1 Sheep Yang et al. (2010)
Uncinaria cf. HE962184.1 Elephant seal Ramos et al. (2013)
A. tubaeforme JQ812691.1 Cat Lucio-Forster et al. (2012)
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Fig. 3. Phylogenetic tree based on ITS gene sequences using the neighbour-joining method.
Numbers above, below, or next to the branches represent bootstrap values. The outgroup is
AM491339.1 (D. caninum).

reconstructions at nematode species and
genus levels (Lucio-Forster et al., 2012;
Nadler et al., 2013). In view of this, the
present study characterized Kalicephalus

ITS rDNA sequences from snakes collected
in Hunan, China. Sequence comparison
revealed that the intraspecific sequence
identities among the three Kalicephalus

species were significantly higher than
interspecific sequence identities. These
results clearly demonstrated that K.

indicus, K. bungari, and K. brachycephalus

represent distinct species. Therefore, our
study of ITS rDNA sequences of Kalicephalus

lays a foundation for the classification,
identification, diagnostics, molecular
epidemiology, and phylogenetics of
Kalicephalus and related parasitic
nematodes.
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