Antiviral activity of a standardized root water extract of *Eurycoma longifolia* (Physta®) against dengue virus

George, A.1,2*, Zandi, K.3, Biggins, J.4, Chinnappan, S.2, Hassandarvish, P.5 and Yusof, A.6

1Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Research & Development Department, Biotropics Malaysia Berhad, Lot 21, Jalan U1/19, Section U1, Hicom-Glenmarie Industrial Park, 40150 Shah Alam, Selangor, Malaysia
3Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
4IBT BioServices, 21 Firstfield Rd, Suite 100, Gaithersburg, Maryland 20878, United States of America
5Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
6Exercise Science, Sports Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia

*Corresponding author e-mail: annie.g@biotropicsmalaysia.com

Received 15 August 2018; received in revised form 7 January 2019; accepted 7 January 2019

Abstract. The aim of this study was to investigate the antiviral property of *Eurycoma longifolia* Jack (EL) against dengue virus. A propriety standardized extract of *Eurycoma longifolia* Jack (Physta®) was tested for anti-viral activity after viral adsorption in Vero cell line. Viral yield was measured by qRT-PCR in four serotypes of dengue virus. The antiviral activity was further investigated in an *in vivo* AG129 mouse model for dengue inhibitory candidates. 100 mg/kg EL extract was fed twice daily and challenged with a lethal dose of (~1x10^5 PFU per mouse) of DENV-2 over a period of six days. Antiviral activity with IC50 of 33.84, 33.55, 58.35 and 119 µg/ml for DENV-1, DENV-2, DENV-3 and DENV-4 serotypes respectively was observed. The selectivity index (SI) values determined as the ratio of cytotoxic concentration (CC50) to inhibitory concentration (IC50) was the lowest for DENV-2 at 28.9. The dengue virus (DENV) replication measured by qRT-PCR showed a reduction of 100% for DENV-1, DENV-2, DENV-3 and 80% for DENV-4 at day 2 of exposure. In the *in vivo* AG129 mouse model, a lower weight reduction, 30% lower viral load and 12% higher platelet in the extract group compared to the control was observed at day 6. The extract of *E. longifolia* has potential anti-dengue properties with improving trends in platelet counts. *E. longifolia* supplementation is potentially a two-pronged approach in treating dengue fever.

INTRODUCTION

Dengue infection is a serious viral disease that is endemic in tropical and subtropical areas of the world (Gubler, 2006; CDC, 2010). The dengue virus, from the *Flaviviridae* family, rapidly spreads through mosquito vectors, *Aedes aegypti* and *Aedes albopictus*. This mosquito-borne disease poses a threat to at least 2.5 billion people of tropical and subtropical regions (Kyle & Harris, 2008). Dengue virus (DENV) is an enveloped virus with four known genotypes (DENV-1, DENV-2, DENV-3 and DENV-4). The DENV-2 is currently the most lethal (Goel et al., 2004). Infection with the virus can either be silent or mild febrile leading to dengue fever (DF) or more severe to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The latter two are often caused by a subsequent secondary infection by other serotypes of the virus. With half of the world’s population residing in the tropics, an estimated 50 million cases of dengue fever (DF) annually which could lead to fatal dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) can be expected.
Dengue poses a threat of global scale. With the current dengue epidemic distributed mostly in urban and suburban areas, it has become a focus of international public health awareness. The difficulty to control the outbreak in highly populated area in the cities makes the epidemic more lethal. The incidence of dengue in Malaysia has increased from 44.3 cases per 100,000 population in 1999 to 181 cases per 100,000 in 2007, an increase of almost six times (Lie et al., 2016; Mia et al., 2013). The high incidence of dengue with its' accompanied fatalities, is a huge financial burden to the country’s' healthcare fund. As to date, no effective anti-dengue treatment is available although several clinical studies are underway (Marimuthu & Ravinder, 2016). A vaccine by the brand name Dengvaxia developed by Sanofi Pharmaceuticals became commercially available in the Philippines and Indonesia but is still threatened to be recalled as it made the children sick (Villar et al., 2015). The vaccine was however not fully effective and may worsen conditions in first timers of dengue infection (Dans et al., 2018). The current treatment are analgesics, fluid balance, electrolytes, blood clotting parameters and platelet replacement (Goel et al., 2004). Therefore, finding an antiviral is an urgent need for this disease.

Herbals and traditional medicine have been reported to possess antiviral properties. Several plants and bioflavonoids have reported activities against DENV virus in-vitro (Kadir et al., 2013; Chan et al., 2004). A popular plant among the natives of Malaysia, the root of Tongkat Ali (Eurycoma longifolia) has been traditionally used for the treatment of malaria and fever (Bhat & Karim, 2010). Subsequent research validated this use by the antiplasmodial effects of the plant (Chan et al., 2004; Kuo et al., 2004). Anti-microbial effects (Kong et al., 2014) and inhibition of tumor promoter-induced Epstein-Barr virus activation was also reported (Jiwajinda et al., 2002). An increase in platelet was observed with E. longifolia supplementation in humans (George et al., 2016). Viremia correlates with the severity of the disease hence a treatment that can reduce the level of viral load could possibly reduce the severity of the disease. In this study we investigate the role of E. longifolia against different stages of all four genotypes of DENV in vitro replication. The efficacy of the extract in vivo would additionally provide a greater understanding of its’ mechanism in treating dengue fever holistically. The AG129 mouse model can be used to investigate dengue inhibitory candidates as it allows for infection by the four serotypes of dengue virus (DENV), whereby replication in relevant cell type is supported and the tissue types are comparable to human infection (Williams et al., 2009). It allows for antibody-mediated protection and DENV infection is enhanced. The relevance of AG129 mice model is that it develops acute, lethal and infection is disseminated with viral loads which are systemic. This is typically characteristic of illness caused by dengue infection (Zellweger & Shresta, 2014). The D2Y98P is a Dengue virus (DENV) strain serotype 2 isolated in 1998 from a DENV-infected patient in Singapore which is transmitted only through mosquito cells (Tan et al., 2010). The benefits of using the D2Y98P strain is its’ ability to induce a virulent phenotype in AG129 (type I/II interferon receptor-negative) mice with low viral load, without the need for mouse-adaptation. The resulting viral replication and dissemination manifests itself clinically typical for dengue infection. A lower dose challenge of D2Y98P can be used to cause lethal disease within 10 days, when administered subcutaneously (Tan et al., 2011). The objective of this study was to evaluate the E. longifolia for anti-viral properties against dengue virus in an in-vitro and in vivo mouse AG129 model.

MATERIAL AND METHODS

Plant extract

The plant extract was a standardized water extract of E. longifolia trademarked Physta® and manufactured under GMP, which was provided by Biotropics Malaysia.
The extract was lyophilized and MilliQ water was used to dissolve the extract. The stock solution was stored at -20°C. The stock solution was diluted using cell culture medium and sterilized with 0.2 micron pore size syringe filter (Millipore, MA, USA) right before each experiment.

Cell cultures
The C6/36 mosquito cell line derived from *Aedes albopictus* was used for the propagation of all DENV isolates used in the investigation. Vero (African green monkey kidney) cell line was used for the evaluation of antiviral activity. The cell lines were maintained and propagated in Eagle’s minimal essential medium (EMEM) (Gibco, NY, USA) containing 10% fetal bovine serum (FBS) (Gibco, NY, USA). The C6/36 and Vero cells were incubated at 28°C and 37°C in the presence of 3% and 5% CO₂ respectively. At the time of virus inoculation and antiviral assays, the concentration of FBS was reduced to 2%. Four different clinical DENV isolates representing the four serotypes of DENV (DENV-1, DENV-2, DENV-3 and DENV-4) were used in this study. Cell lines and virus were provided by Virology laboratory of the Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya (Kuala Lumpur, Malaysia) and genotyped using full genome sequencing method by the same group. All the four clinical isolates were propagated in C6/36 cell line. After titration of the virus isolates, viral stocks were stored at -80°C for further use.

In vitro cytotoxicity assay
An MTS assay was performed to determine the toxicity of the extract against cells. The confluent Vero cells were treated by different concentrations of the extract in triplicates in a 96-well microplate. The treated cells were incubated for 2 days, at 37°C followed by the addition of 15 μl of MTS solution (Promega, WI, USA) to each well. The microplate was incubated at 37°C for 4 hours. Then, 100 μl of the solubilization/stopping solution was added to each well. The optical density (OD) of all wells including non-treated cells were read calorimetrically by a plate reader using 570 nm wavelength filter (TECAN, Mannendorf, Switzerland). Cytotoxicity of the extract was calculated using Graph Pad Prism 5 (Graph Pad Software Inc., San Diego, CA) along with its dose-response curve plotting.

Antiviral activity assays
In order to determine the effects of the extract against Dengue viruses (DENVs), *in vitro* confluent monolayers of Vero cell line were infected with multiplicity of infection (MOI) 0.1 of each DENV serotypes followed by virus adsorption for 1 hour at 37°C. The infected monolayer was rinsed twice with sterile PBS to eliminate the unabsorbed virus and supplemented with 2% FBS containing Eagle’s Minimum Essential Medium (EMEM) (Gibco, NY, USA) with different concentrations of the extract. Later, the plates were incubated at 37°C for 2 days in the presence of 5% CO₂. DENVs yield was then evaluated by quantitative RT-PCR.

Quantitative RT-PCR
Each step of qRT-PCR was carried out in a final volume of 20 μl containing 5 μl of diluted RNA, 1 μl of probe/primer mix, 10 μl of real time master mix and 4 μl of nuclease-free water (genesig standard kit). Quantitative PCR measurement was performed using StepOnePlus real time PCR system (Applied Biosystems, USA) according to the manufacturer’s protocol. Raw data was analyzed with StepOne™ Software v2.2.1 to determine baseline and threshold for computed tomography (CT). The percentages of DENV yield inhibition were obtained by comparing against untreated controls maintained in parallel. Data from triplicate experiments were plotted using Graph Pad Prism 5 (Graph Pad Software Inc., San Diego, CA.)

In vivo study of the efficacy of extract against DENV
This study tested the efficacy of the extract in 6-8 week old female AG129 mice in...
accordance with the guidelines set by the Noble Life Sciences (NLS) Animal Care and Use Committee, which is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC), in accordance with the Public Health Service Policy, U.S. Dept. of Agriculture (USDA).

The AG129 mice were obtained from B&K Universal and challenge with Dengue virus (DENV) in a laboratory. Mice randomly assigned into Groups 1 and 2 were challenged with a lethal dose (~1x10^5 PFU per mouse) of Dengue virus serotype 2 (strain D2Y98P) via the subcutaneous (SC) route (0.200 ml) and were kept under ad libitum feeding conditions with 12 hr cycles of light and darkness. Each group had 6 mice (Martinez-Gutierrez et al., 2014). Either test compound or PBS was administered to both groups via oral gavage (0.100 ml) twice daily (every 12 hours) for a total of 6 days post-challenge starting 1 hour post challenge. Both groups were monitored for weight loss, morbidity, and mortality for 15 days post-challenge. Survival and health of each mouse are evaluated once a day using a scoring system of 1-7 described in Table 1 (Tang et al., 2016).

Mice displaying severe illness as determined by >20% weight loss, a health score of 5 or above, extreme lethargy, and/ or paralysis were euthanized. Mice in both groups were test bled via retro orbital route on Day 6. One hundred microliters (0.1 ml) of whole blood from each sample was assessed for platelet counts. The remaining portion of each sample was processed for serum assessed for viral load via immunoplaque assay.

Table 1. Severity scores for test animals

<table>
<thead>
<tr>
<th>Score</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Healthy</td>
</tr>
<tr>
<td>2</td>
<td>SR</td>
<td>Slightly Ruffled</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>Ruffled</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>Sick</td>
</tr>
<tr>
<td>5</td>
<td>VS</td>
<td>Very Sick</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>Euthanize</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>Found Deceased</td>
</tr>
</tbody>
</table>

Statistical analysis
The half maximal cytotoxicity concentration (CC_{50}) and half maximal inhibitory concentration (IC_{50}) were used as the main parameters in this investigation. Selectivity index value (SI) was determined as the ratio of CC_{50}/IC_{50} of the compound. GraphPad PRISM for Windows, version 5 (GraphPad Software Inc., San Diego, CA, 2005) was used for all statistical analyses.

RESULTS

Cytotoxic activity of the extract
Cytotoxicity of the extract on Vero cells were evaluated using the MTS assay. The related half maximal cytotoxic concentration at 50% (CC_{50}) values for day 4 were calculated using Graph Pad Prism 5 (GraphPad Software Inc., San Diego, CA) (Figure 1a). The CC_{50} value for day 4 was 968.5 µg/ml. The maximum non-toxic (MNTD) dose was 480.1 ug/ml.

In vitro effect of E. longifolia extract on DENV replication
Virus yield reduction assay using the specific qRT-PCR for all 4 DENV serotypes to evaluate the in vitro anti-dengue activity of the extract, confirmed antiviral effects by virus yield reduction based on the measurement of DENVs RNA copy number after 2 days post-treatment (Figure 1b). The extract exhibited a dose-dependent inhibition effects against all 4 DENV genotypes replication in Vero cells with a half maximal inhibition concentration (IC_{50}) values presented in Table 2. It was demonstrated that the extract showed significant antiviral activity against different genotypes of DENV. The SI values determined as the ratio of cytotoxic concentration (CC_{50}) to inhibitory concentration (IC_{50}) was the highest for DENV2 at 28.9.

In vivo effect of E. longifolia extract against DENV infected mice
All mice receiving the extract succumbed to infection with a mean time to death of
Table 2. IC\textsubscript{50} values of EL extract against DENV serotypes

<table>
<thead>
<tr>
<th>Virus serotype</th>
<th>Antiviral activity, IC\textsubscript{50} (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENV-1</td>
<td>33.84</td>
</tr>
<tr>
<td>DENV-2</td>
<td>33.55</td>
</tr>
<tr>
<td>DENV-3</td>
<td>58.35</td>
</tr>
<tr>
<td>DENV-4</td>
<td>119</td>
</tr>
</tbody>
</table>

DISCUSSION

Anti-dengue effects of medicinal plants have been reviewed by Kadir \textit{et al.}, 2013. In the current study water extract of \textit{E. longifolia} demonstrated anti-viral property observed with up to 100% inhibition of viral RNA replication in a manner which was dose dependent potentially via the inhibition of RNA polymerase. The lowest IC\textsubscript{50} was for strain DENV-2 with an IC\textsubscript{50}=33.55 µg/ml. Different compounds will have dengue inhibitory effect targeting on the different phases of the virus life cycle either through prevention of host cells infection, during the maturation of the virus, viral RNA synthesis, or the production of viral particles. The \textit{E. longifolia} extract appears to inhibit DENV at the level of viral RNA synthesis. Macrophages and monocytes are attacked and infected during a dengue virus infection (Martina \textit{et al.}, 2009). The dengue virus spreads via the infected macrophages and monocytes that pass through the lymphatic system. The dengue virus subsequently
infects other cells in the lymph nodes, bone marrow and macrophages in both the spleen and liver including monocytes in the blood. This results in viremia with a high degree of dengue virus in the bloodstream. The anti-viral effect in this study was confirmed in vivo with a 30% less viral load in supplemented animals. The *E. longifolia* could then be a potential candidate to prevent the further transmission of the virus thus minimizing disease severity, provided the concentration is sufficient to induce such an effect. This study reports for the first time an herbal tested in the mouse AG129 model for anti-dengue activity. The extract demonstrated lesser weight reduction in treated mice, 30% lower viral load, 12% higher platelet for treated mice and a higher health score. A lesser weight reduction (depicting better health) which relates to the better health score could translate to a better wellbeing in humans. The *E. longifolia* was proven for improvement in the quality of life and its’ safe use demonstrated in several studies (Tambi et al., 2006; Ismail et al., 2012; Udani et al., 2014). This however, would have to be confirmed in a dengue clinical study. According to Li et al. (2013) the acceptable daily intake (ADI) of up to 1.2 g/adult/day was determined for *E. longifolia* extract, calculated based on a 4-week subacute and 13-week subchronic exposure of upto 2 g/kg b.w. per day.

In this study, the in vitro effects are also replicated in vivo. In addition platelets counts increased. In the study by George et al. (2016), lymphocyte, T-cells and naïve T-cells (which contribute to adaptive immunity) improved significantly in subjects that were supplemented with *E. longifolia* extract. An increasing trend in platelets was also observed. The innate and adaptive immunity of the immune system is important in helping the patient recover from dengue infection (Diamond, 2003). In
an adaptive immune response to dengue infection, B cells produces antibodies IgM and IgG which specifically recognizes and neutralizes the dengue viral particles. Also, killer T cells is another adaptive immune response that recognizes and kills the dengue infected cells. The innate immune response on the other hand, responds by helping the antibodies and white blood cells remove the virus. The innate and adaptive immune system hand in hand neutralizes dengue infection to cause the patient to recover from dengue fever. This attribute of *E. longifolia* may additionally aid in the quicker recovery from dengue infection which was observed in the *in vivo* study, where the Health Score of the animal was slightly of a better trend than the animals which were not supplemented. Thrombocytopenia during dengue fever and especially dengue hemorrhagic fever results in lower platelet counts in patients (Mourao et al., 2007). Supplementation with *E. longifolia* also raised platelet counts *in vivo* in this study and clinically (George et al., 2016) making it a potential treatment for dengue fever and the more severe dengue hemorrhagic fever.

Another popular plant used for the treatment of dengue is the leaves of *Carica papaya*. This has been clinically investigated in four clinical trials where an increase in platelet was observed (Charan et al., 2016). Anti-dengue activities of the extracts from *C. papaya* by using bioinformatics tools reported flavonoid quercetin of *C. papaya* with highest binding energy against dengue virus NS2B-NS3 protease (Senthilvel et al., 2013). However, in another study the antiviral activity of quercetin decreased by more than 67% in the presence of 50 ug/ml extract whereas in this study, a decrease of 80% could be seen at the same concentration. In another study, methanolic extracts, containing triterpenoids and flavonoids, showed cytotoxic effects (CC50 = 0.6156 mg ml⁻¹), whereas a chloroform extract, rich in alkaloids, tannin and saponin, was non-cytotoxic (CC50 = >1 mg ml⁻¹) to LLC-MK2 cells and it showed moderate inhibitory activity (EC50 = >1 mg ml⁻¹) against DENV2 with a selectivity index value of ± >1 (Joseph et al., 2015). In comparison, the CC50 of *E. longifolia* extract was 968.5 µg/ml demonstrating a high level of safety and DENV-2 viral inhibitory activity at IC50= 33.55 µg/ml and a selectivity index of 28.9 exhibiting anti-viral activity with good selectivity index values. In addition, the *E. longifolia* has been reported to stimulate immune cells by increasing T-cells and lymphocytes (George et al., 2016) and natural killer cells (Muhamad et al., 2015) that could reduce symptoms of dengue fever. The *E. longifolia* is also an antioxidant that could protect against free radical damage arising from the disease which would improve quality of life of patients (Christapher et al., 2013).

Though an improving trend was observed with *E. longifolia*, it did not reach statistical difference between groups in the *in vivo* study. Using a lethal viral dose in the AG129 mouse model with a small number of animals inadvertently resulted in the mice dying at the end of the study. It would be beneficial to study the effect of the treatment in a non-lethal dose to establish the efficacy of *E. longifolia* as a broad range treatment solution to dengue fever.

The root water extract of *E. longifolia* demonstrated anti-viral effects against 4 serotypes of dengue virus potentially having a broad range activity against a mutative virus potssibly via the inhibition of the mRNA polymerase as synthesis of new virus was inhibited upto 100% in three of the dengue serotypes. Upon infection in a mice model, the extract was able to protect the mice observed by a lesser weight reduction, 30% lower viral load, 12% higher platelet and a higher health score. Hence, a treatment of this extract in human patients infected with the dengue virus, could provide a multi-pronged approach to dengue treatment, via antiviral effects (thus potentially lowering the intensity of the infection), while concurrently increasing platelet counts and enhancing the quality of life, health and recovery of dengue patients.
In the future, the extract which has proven safety and efficacy in humans from previous clinical studies could be investigated further to establish the efficacy of the extract as a treatment or adjuvant therapy for dengue fever in humans.

Acknowledgements. The authors would like to thank Biotropics Malaysia Berhad for funding the study. The animal study was carried out in accordance with the guidelines set by the Noble Life Sciences (NLS) Animal Care and Use Committee, which is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC), in accordance with the Public Health Service Policy, U.S. Dept. of Agriculture (USDA).

REFERENCES

