Detection and differentiation of opportunistic viral infections potentially contributing to renal graft rejection by tetraplex-nested PCR

Ashouri Saheli, Z.1, Shenagari, M.2,3,4*, Harzandi, N.1 and Monfared, A.4,5
1Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
2Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
3Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
4Organ Transplant Research Center, Guilan University of Medical Sciences, Rasht, Iran
5Urology Research Center, Guilan University of Medical Sciences, Rasht, Iran
*Corresponding author e-mail: Shenagari@gums.ac.ir; Shenagari@gmail.com
Received 2 October 2018; received in revised form 1 March 2019; accepted 4 March 2019

Abstract. The need for an intensive care protocol, sometimes weekly or biweekly, has led to a significant increase in laboratory costs for kidney recipients. In the present study, an in-house tetraplex nested PCR assay was developed and validated for the specific detection of BKV, JCV, HCMV and EBV in clinical samples. We determined the Limit of Detection (LOD) and analytical specificity. To demonstrate the diagnostic performance of the assay, a total of 102 archival plasma samples were tested and compared with a commercial uniplex real-time PCR kit. The analytical sensitivity of the in-house tetraplex nested PCR assay was 173 copies/ml, when all four viruses were present in the specimens. These values were 79.2, 58.7, 87.6 and 96.1 copies/ml when only BKV, JCV, HCMV and EBV respectively, were present. The cross-reactivity assays were shown no detectable signal in the tetraplex PCR results. The estimated diagnostic sensitivities were 92.6% for BKV, 92.3% for JCV and 100% for both HCMV and EBV as compared with commercial kits. Regarding the sensitivity and specificity, it seems that the developed Multiplex Nested PCR assay could be used as a reliable virus-associated renal rejection (VRR) panel in post renal transplant surveillance.

INTRODUCTION

Solid organ transplantation is a therapeutic method for many human diseases and becomes an effective therapeutic option for end-stage renal diseases. Kidney transplant rejection can be reduced through the use of immunosuppressive agents (Chinen & Buckley 2010). Although, deliberate immunosuppression has been administered during last decades to reduce the chance of graft rejection, it has also augmented the sequels of opportunistic infections post-renal transplantation (Comoli & Ginevri 2012). Inappropriate monitoring and management of viral infections occasionally could hamper the graft survival due to direct viral-associated nephropathy or indirect prophylactic interventions such as reducing the dose of immunosuppressant to prevent extra-renal complications (Zaza et al., 2014). Many opportunistic viral infections after renal transplantation result from the reactivation of latent viruses (Weikert & Blumberg 2008). Although more viral infections may have clinical significance in kidney transplant recipients, only some of them can be considered as the etiologic agents of graft rejection. In general, human Cytomegalovirus (HCMV) and BK virus have a lot of clinical significances due to potential ability in developing nephropathy and graft rejection post kidney transplantation, but some studies, though controversial, point to the role of JC
virus and Epstein-Barr virus (EBV) in creating similar consequences (Cukur-

nanovic et al., 2012; Phillips et al., 2004; Purighalla et al., 1997; Shenagari et al.,

Kantarci et al., 2011; Shenagari et al., 2017). Due to the role of these viruses in

the development of renal or extra-renal complications, many nephrologists, especially in

the first year after transplantation, continuously monitor them to prevent probable serious

complications (Comoli & Ginevri 2012). The need for an intensive care protocol,

sometimes weekly or biweekly, has led to a significant increase in laboratory costs for

these patients. Developing a cheap and reliable test for these viral infections can
greatly reduce the cost of screening and encourages clinicians to use NATs for

screening of viral infections associated with kidney transplant rejection in developing
countries. The aim of this study was to develop a reliable, cost-effective and

simultaneous tetraplex nested PCR method to detect four clinically important viruses

potentially related to renal graft rejection.

MATERIAL AND METHODS

Samples and viruses

A total of 102 archived plasma samples from renal transplant recipients referring to
Molecular Diagnostic Center were included in this study. These samples had been stored
at -80°C until the performing tests. Some positive-control samples for optimization and
validation test were prepared. For assay development and validation, control viruses,
including HTLV-1, HIV-1, HSV-1, HSV-2, VZV, HSV-6, HSV-7, HSV-8, SV40, HCV, HBV, TTV,
B19 and human genome were used for assessment of clinical specificity. The
abovementioned control agents were clinically isolated from Iranian patients.

Primers design

The extent of homology between the genomes of BK and JC viruses which was estimated
about 75% persuaded us to get all genomic sequences (215 sequences) related to these
viruses available from NCBI GenBank database and run a large degree of multiple
alignments to identify conserved region among various isolates and distinct areas
between two viruses (Frisque et al., 1984). Analysis of the BKV genome reveals a great
deal of sequence variation. For EBV and HCMV conserved and species specific
genes were collected to ensure coverage of all strains and analytical specificity.
The nucleotide sequences were aligned using Clustal W and pairwise sequence
comparisons, and phylogenetic analysis was performed with MEGA version 7. Altogether
8 pair primers were designed to run a tetraplex nested PCR for the viruses in separate two steps. Designing were done using AlleleID, version 7.0 and PrimerFlex
version 2.0 softwares (Premier Biosoft International, Palo Alto, CA, USA). Primers
were designed based on conserved regions of genome for each virus so they were able to
recognize all the genotypes of each virus. For the first round the primers designed to
amplify a 741 bp, a 736 bp, a 552 bp and 732 bp from of BK Large T antigen, JC Large T
antigen, HCMV UL55 and EBV DNA polymerase genes, respectively. The nested
primers were designed based on interior region of related first round amplicon as
follows: BK virus 261 bp, JC virus 165 bp, CMV 367 bp and EBV 476 bp. The sequences
and characteristics of designed primers are shown in Table 1.

Uniplex nested PCR and Real-time PCR

Viral DNA was extracted from 200 µl of plasma samples using QIAamp® DNA mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. In-house
Uniplex nested PCR was carried out simultaneously with 2 µM of specific external
primer sets designed for the first round using Accupower Hotstart PCR premix (catalog
no. K-5051; Bioneer, Daejeon, Korea). Amplification was carried out in a
programmable thermocycler (ProFlex™ 96-
well PCR System, Applied Biosystems™,
USA). The amplification profile consisted of a single cycle of enzyme activation at 95°C
for 5 min, followed by 30 amplification cycles of denaturation at 94°C for 30 s, annealing at
58°C for 15 s and extension at 72°C for 90 s, and a final extension at 72°C for 10 min. 5 µl
Table 1. The sequences and characteristics of designed primers were as follows:

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (First Round)</th>
<th>Primer length</th>
<th>Amplicon length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK ForEx</td>
<td>TTGTCAGCAAGCAGTAGATACA</td>
<td>22</td>
<td>741 bp</td>
</tr>
<tr>
<td>BK RevEx</td>
<td>CCTAAACCAATTAGCAGTAGC</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>JC ForEx</td>
<td>TGATGATGAAAACAGGATC</td>
<td>21</td>
<td>736 bp</td>
</tr>
<tr>
<td>JC RevEx</td>
<td>TCAACCCCTTTGTTGGCTGGC</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>HCMV ForEx</td>
<td>TCTGCGTTAAACTTGTTATCGTC</td>
<td>23</td>
<td>552 bp</td>
</tr>
<tr>
<td>HCMV RevEx</td>
<td>CTATAACGGGCGTTAGGGAAC</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>EBV ForEx</td>
<td>CCACCAGAACGGGGAGTTG</td>
<td>20</td>
<td>732 bp</td>
</tr>
<tr>
<td>EBV RevEx</td>
<td>TGGGCACCTGCGAAGACAT</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (Second Round)</th>
<th>Primer length</th>
<th>Amplicon length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK ForIn</td>
<td>GCCTTAATGTAAACCTACCC</td>
<td>21</td>
<td>261 bp</td>
</tr>
<tr>
<td>BK RevIn</td>
<td>GACAGGATACTCATCATTGTA</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>JC ForIn</td>
<td>GACAGCCATATGCAGTAGTG</td>
<td>20</td>
<td>165 bp</td>
</tr>
<tr>
<td>JC RevIn</td>
<td>GTCTAGTACATGCCCATAAGC</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>HCMV ForIn</td>
<td>AGTCACCATTCCTCTCATAC</td>
<td>20</td>
<td>367 bp</td>
</tr>
<tr>
<td>HCMV RevIn</td>
<td>TGCTTGAAGCTTCTACGGTA</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>EBV ForIn</td>
<td>AATCTCTGCAACCTCCAC</td>
<td>18</td>
<td>476 bp</td>
</tr>
<tr>
<td>EBV RevIn</td>
<td>TGCTCTACGCTTCTCCTCC</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

of 1/10 diluted first-round product was then transferred into a second PCR solution mixture. The second-round reaction mix contained the same constituents as the first, but 2 µM of each internal primers and same premix. The second-round PCR amplification was performed as follows: 5 min initial denaturation at 95°C then thirty-five cycles of 94°C for 30 secs, 57°C for 15 secs, 72°C for 45 secs for, and a final extension for 5 minutes. Final reaction volume was always 20 µl for both rounds. The uniplex PCRs were included by blank and negative control reactions to check cross-contaminations. After PCR, 10 µl of the product was electrophoresed in a 1.5% agarose gel in 0.5x TBE buffer for 30 min at 3 V/cm and visualized by etidium bromide staining. A 100-bp DNA Ladder (Thermo Scientific™ GeneRuler™ California) was used for molecular weight markers. Sequencing was done automatically using dylabeled dideoxy nucleotides and DNA polymerase in an Applied Biosystems 3730XL DNA sequencer (Applied Biosystems, Foster City, CA, USA). In addition, real-time PCR was performed in a StepOne Plus™ instrument (Applied Biosystems, Foster City, CA, USA) using the GeneProof™ real-time PCR kits (Vídeňská, Czech Republic) simultaneously for BKV, JCV, CMV and EBV according to the manufacturer’s instruction. An internal control was included in the reaction mix of Real-time PCR kits, controlling the possible inhibition of the PCR or excluded, controlling also the DNA extraction process quality.

Tetraplex nested PCR assay

Multiplex PCR was performed in 25 µl PCR reaction using Multiplex PCR plus kit (Qiagen, Germany). 12.5 µl of 2x Multiplex PCR Master Mix (Qiagen, Germany), 2.5 µl of Q-solution, 2.5 µl of CoralLoad (except first round), 2 µM of each 8 specific primers for BKV, JCV, CMV and EBV (Totally 16 µM) and 5 µl extracted DNA were added to the master mix according to manufacturer’s instruction. Here too, as in the case of uniplex reaction,
5 µl of 1/10 diluted first-round products were then transferred into a second PCR solution mixture. The nested multiplex thermocycling program adjusted according to manufacturer’s instructions as follows: initial denaturation at 95°C for 5 s followed by 30 amplification cycles of denaturation at 95°C for 30 s, annealing at 58°C for 90 s and extension at 72°C for 90 s, and a final extension at 68°C for 10 min. The mentioned program was same for both round except cycling that were 30 and 35 for first and second rounds respectively. The tetraplex PCRs were included by blank and negative control reactions to check cross-contamination. The multiplex PCR reactions were performed using ProFlex™96-well PCR System and finally the PCR products were run on 1.5% agarose gel.

Analytical sensitivity and specificity

In order to assess the analytical sensitivity of designed uniplex and tetraplex PCR, the purified amplicons of BKV, JCV, HCMV and EBV were inserted into the TA cloning vector (Fermentas TA cloning kit, PTZ 57R/T) and transformed into competent *DH5α* bacteria according to manufacturer’s instructions. Plasmids were extracted from bacteria using Qiaprep® Spin Miniprep Kit (Qiagen, Germany). The concentrations of plasmids were determined using NanoDrop™ 2000/2000c Spectrophotometers (Thermo Fisher Scientific, USA), and standards were made based on copy number/ml. Serial dilutions of constructed plasmids related to BKV, JCV, HCMV and EBV were prepared as follows: 10, 50, 100, 200, 500 and 1000 copies/ml. Plasmid copy number was calculated as the DNA concentration in grams per µl times 6×10^{23} copies per mol/molecular weight of cloned plasmid in gram per mol.

Plasmid copy number was calculated as the DNA concentration in grams per µl times 6×10^{23} copies per mol/molecular weight of cloned plasmid in gram per mol. Uniplex and tetraplex-PCR were performed on each standard in a quadruplicate mode and repeated five times with 5 days intervals to inspect the limit of detection (LOD). The sensitivity was assessed based on the minimum plasmid copy number at which amplification occurred. Therefore, the LOD for these particular uniplex and multiplex assays were estimated using probit analysis to match these probabilities for comparison purposes. Probit analysis (SPSS, vision 19; IBM) was used to determine the 95% LOD and the two-sided fiducial confidence intervals from the combined data of all replicates tested for each virus. Final LODs were expressed as a concentration, copies/ml.

Since the analytical sensitivity of multiplex PCR could be affected by high concentration of each target sequence, a serial dilution of each viral standard were tested against a high copy number/ml (10^6) standard of the other one. To determine the analytical specificity and cross-reactivity of developed multiplex PCR, evaluation of 16 designed primers was performed by assessing potential homologies to all sequences deposited in NCBI using the BLASTn algorithm (http://www.ncbi.nlm.nih.gov). As well as, control samples that consisting HTLV-1, HIV-1, HSV-1, HSV-2, VZV, HSV-6, HSV-7, HSV-8, SV40, HCV, HBV, TTV, B19 and human genome were used as template in separate reactions.

Clinical sensitivity and specificity

Clinical sensitivity and specificity were determined by comparison between results of in-house uniplex and multiplex PCRs and the results of concurrently accompanying commercial Real-time PCR for simultaneous detection and quantitation of BKV, JCV, HCMV and EBV in archival plasma samples of 102 renal transplant recipients. Due to lack of sample with four co-infected viruses, two manually spiked samples, prepared from mixing plasma of patients with one agent and other plasmas including 3 agents were prepared.

RESULTS

Optimization of the tetraplex nested PCR

Gradient PCR was utilized to identify optimum annealing temperatures to all designed primers. The optimal temperature determined as 58°C for the first round and 57°C for the second round. The accuracy of amplicons produced in uniplex PCR reactions was confirmed by DNA sequencing using specific primers. Subsequently, the in-house multiplex PCR was optimized. As
shown in Figure 1, specific amplicons produced in Multiplex PCR format were readily detected and discriminated on a 2% agarose gel. Optimization of PCR using positive DNA samples with individual Multiplex PCR primers resulted in the amplification of the 261 bp for BKV DNA, the 165 bp for JCV DNA, the 367 bp for HCMV DNA, and the 476 bp of EBV DNA at an optimized annealing temperature of 57°C.

Specific detection of BKV, JCV, HCMV and EBV in the tetraplex nested PCR assay

The results indicated that designed specific primers for each virus did not cross-react with others. Especially BK specific primers amplified only this virus and did not amplify the genetically relevant JCV and vice versa. Similarly, HCMV and EBV species specific primers did not amplify genomes of each other's.

Analytical sensitivity and specificity of the single PCR and tetraplex nested PCR assays

Standard curve analysis used to calculate efficiency of Real-time PCR methods (Figure 2). Lower limit of 95% detection (LLOD) was measured for each uniplex and tetraplex PCR assays and expressed as the
The concentrations of each plasmid DNA were indicated above each lane. PCR products were resolved by electrophoresis in 1.5% agarose in TBE buffer and the gel was stained with ethidium bromide and photographed.

Lowest copy number detected 95–100% of the time, depending on the assay. LLOD was determined for each virus in the multiplex assay using plasmid dilutions. In Figure 3 agarose gel electrophoresis showing Limit of detection (LOD) of the uniplex and tetraplex PCR assays employed over mentioned serial dilutions of the four target gene-plasmids of EBV, CMV, BKV and JCV. The primers were tested in silico by querying the NCBI nucleotide database for related sequences using BLASTn. Full coverage and 100% identity for the primer sequences showed to correlated viruses included various strains and genotypes of four viruses. No organism represented the best match for both the forward and reverse primers for any of our primer pairs except related viruses. As a further test of specificity, Genomic DNA or cDNA from ten different samples including human genome and some blood transmitted viruses, including HTLV-1, HIV-1, HSV-1, HSV-2, VZV, HSV-6, HSV-7, HSV-8, SV40, HCV, HBV, TTV, B19 were assayed. No detectable signal in the Multiplex PCR was seen.

Clinical sensitivity and specificity of in-house tetraplex nested PCR
Totally 102 archived plasma samples that were referred to Molecular Diagnostics Center in Guilan province were tested using both the multiplex PCR and the commercial Real-time PCR kits. In order to assess the clinical reliability and applicability of in-house Multiplex PCR, the results were compared with Real-time PCR results. As summarized in Table 2 based on Real-time PCR results, 26(25.4%) samples were JCV positive, 54(52.9%) samples were BKV positive, 16(15.6%) samples were HCMV positive and 10(9.8%) samples were EBV positive. The results of uniplex nested PCR assay were the same as Real-time PCR. The estimated sensitivity of tetraplex nested PCR for detection of four agents was 92.6% for BKV, 92.3% for JCV and 100% for both HCMV and EBV as compared with commercial uniplex Real-time PCR kits. On the other hand, 4(3.9%) samples (for BKV) and 2(1.9%) samples (for JCV) were positive only by the commercial uniplex Real-time PCR kits. Moreover, clinical specificities of in-house tetraplex nested PCR and uniplex nested PCR were assessed separately by using negative samples which were proved to be negative.
Table 2. Samples that assessed for the presence of four viruses by real-time PCR, uniplex PCR and tetraplex PCR were as follows:

<table>
<thead>
<tr>
<th></th>
<th>Uniplex Real-time PCR</th>
<th>In-house Uniplex PCR</th>
<th>In-house Multiplex PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BKV</td>
<td>JCV</td>
<td>HCMV</td>
</tr>
<tr>
<td>Positive (n)</td>
<td>54</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>Negative (n)</td>
<td>48</td>
<td>76</td>
<td>86</td>
</tr>
<tr>
<td>Co-infected with 1</td>
<td>27</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>agent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-infected with 2</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>agent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total samples</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

by commercial uniplex Real-time PCR kits previously mentioned. No positive results were observed, thus the clinical specificity of the assay considered 100% for four agents.

DISCUSSION

The probability of survival of the renal transplant has increased with the advent of new immunosuppressive drugs, nonetheless this also increases the likelihood of multiplying opportunistic viruses with the ability to boost the rejection rates among these patients. For this reason, many of the transplantation centers developed regular screening and monitoring system for accurate diagnosis and timely treatment in their post-transplant care plan (Chakera et al., 2011). Both urine cytology and molecular-based methods can be used to detect polyomavirus infection, and cell cultures or antigenemia determination is effective for detecting CMV infection in RT recipients (Knipe et al., 2007). However, PCR technology, which is simple, rapid, and sensitive and can distinguish virus subtypes, is gradually replacing urine cytology for polyomavirus infection detection and cell culture or antigenemia determination for CMV detection (Randhawa et al., 2005; Kwon et al., 2015) Additionally, PCR technology is increasingly considered to be the "gold standard" for virus infection detection. PCR based methods for detection of opportunistic viral infections are now considered as an integral part of the post-transplant monitoring and management (Cukuranovic et al., 2012). Various Real-time PCR assays have been developed and used in the care and management of renal transplant recipients (Khansarinejad et al., 2012; Funahashi et al., 2010). For clinical purposes, it is desirable to have a standard, absolute viral load for the diagnosis and monitoring of these viruses; therefore, there is a need to compare the differences among various assays. Real-time PCR is the principal technology used for viral load measurement in these patients. Various testing protocols can have significant differences in the limit of quantitation and dynamic ranges, leading to different conclusions regarding the cutoffs and predictive values of viruses for nephropathy (Hoffman et al., 2008). Also, financial constraints in developing countries can be considered as a negative factor in choosing simultaneous Real-time PCRs in detection and monitoring of important viral infections (Ahmed et al., 2015). Up to our knowledge there is no available commercial kit based on Multiplex PCR or Multiplex Real-time PCR for monitoring of BKV, JCV, HCMV and EBV. As well as, there is no standardized and US Food and Drug Administration approved commercial assay for detection and quantification of these agents and substantial inter-laboratory variability and cost-ineffectiveness points to the need to supply standard and applicable method. Despite
this, many study have been designed to develop in-house Uniplex qualitative PCR or quantitative Real-time. Also, there are a few reports of in-house Multiplex-PCR assays for simultaneous diagnosis of opportunistic viral infections post renal transplantation (Funahashi et al., 2010; Bergallo et al., 2007; Wada et al., 2007; Gunson et al., 2009; Whiley et al., 2001). The present study is the first attempt to design a PCR based method as virus associated renal rejection (VRR) panel to detect all recommended tests in monitoring of renal recipients. Multiplex PCR applications benefit diagnostics in a clinical laboratory due to their ability to detect and rule-out many related pathogens in a single reaction, reducing tech-time by more than 3 hours for a panel of many viruses (Pierce et al., 2012). Despite some limitations of qualitative PCR assay in management of viral infections among renal transplant recipients such as inability in quantification and determination of severity of infection or monitoring antiviral treatment responses, it seems it could be suitable and cost-effective for primary screening of replication of viral infections in RT. Analytic sensitivity, or the lowest possible concentration necessary to produce a reliable result, is an important parameter to consider when replacing singleplex Real-time PCR assays with Multiplex PCR platforms evolving from newer, more expensive technologies. The analytical sensitivity of the in-house tetraplex nested PCR assay was 173 copies/ml, when all four viruses were present in the specimens. These values were 79.2, 58.7, 87.6 and 96.1 copies/ml when only, BKV, JCV, HCMV and EBV respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 102 plasma samples were tested and compared with a commercial Real-time PCR kit. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of opportunistic viral infections among renal transplant recipients. Further characterization of viruses in clinical specimens may be of greater clinical importance, especially when particular subtypes are known to be more virulent in the population as is the case with BKV in particular populations. It should be noted that due to clinical importance of the HCMV, JCV and EBV and in some cases BKV in other immunocompromisation episode, the presented test can be utilized successfully in these patients. Finally, considerable sensitivity and specificity of developed qualitative tetraplex nested PCR make it a reliable virus associated renal rejection (VRR) panel, at least as a point of care screening of opportunistic viral infections in renal transplant patients.

Conflict of interest statement
The authors have no conflict of interest.

Acknowledgements. We would like to acknowledge Mrs. Mojan Shaban for the contribution in this study. We appreciate Babak Ashrafkhani, for reviewing and editing the manuscript. The study was financially supported using a grant from Guilan University of Medical Sciences. This study was approved by the Ethics Committee of Karaj Branch, Islamic Azad University. (Permit number: 25367).

REFERENCES

