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Abstract: Autoregressive integrated moving average (ARIMA) was applied to make real-
time predictions on the Aedes egg populations in three selected dengue hotspots of
Penang, Malaysia. The weekly ovitrap collection was carried out to determine the
abundance of Aedes eggs in field population in some selected areas. The ARIMA models
were able to estimate actual egg abundance using two criteria. The first criteria is
determine the reliability of statistics and the second is to measure the accuracy of
forecasting ability of the model equation. The parsimonious model with a lowest order
of AR or MA and RMSE value of the forecast for each data set was considered the best.
ARIMA (1,0,0), ARIMA (2,0,0) and ARIMA (0,1,1) models were judged to be the best fit
for the suburban, urban squatter and urban area data sets respectively. The models were
able to forecast the number of eggs within a range of one to eleven weeks. The developed
models were able to estimate the egg abundance adequately to permit their use in Aedes

control programme in Penang Island. Thus, it can be a useful tool for health officials to
improve the management of mosquito control and alert the public to reduce the possibility
of dengue outbreaks.

INTRODUCTION

In developing countries, vector borne
disease such as dengue fever (DF) not only
become a major threat to the communities’
health, but also cause a huge economic
liability to the health services (Shepard &
Suaya, 2009; Guzman & Isturiz, 2010;
Kongsin et al., 2010). Its geographical
spread is increasing; only nine countries
have been recorded with dengue epidemics
before 1970. Currently, more than 100
countries all over the world have

experienced dengue endemic. Regions
such as the Southeast Asia, Western Pacific
and Americas are affected tremendously
(WHO, 2013). Its occurrence has increased
dramatically, with up to 100 million cases
of DF occurring annually world-wide which
resulted in 250,000 to 500,000 cases of
dengue haemorrhagic fever (DHF) each
year in recent decades (Shu & Huang, 2004;
WHO, 2004). Out of this number, an
estimated 50 million dengue infections
occur each year in tropical and subtropical
regions alone and approximately 24,000
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results in death (Rigau-Perez & Gubler,
1999; Barclay, 2008; Suaya et al., 2009;
Guzman & Isturiz, 2010).

In Malaysia, the number of reported
dengue cases has been escalating year
to year for the last 20 years. The cases
reported has seen 18 fold increase from a
total of 6543 cases in 1995 to 120,836 cases
in 2015. Numerous national anti-mosquito
and cleanliness campaigns have not
succeeded in reducing the number of
reported dengue cases. This condition has
raised the concerns of the public and
officials in the Ministry of Health (MOH,
2009; MOH, 2015). The causes for the
increase of the dengue epidemic are more
likely associated with the breakdown of
vector control, and the presence of multiple
dengue virus serotypes co-circulating
(KKM, 2002; KKM, 2005). Rapid population
growth, unplanned city development,
inadequate public health infrastructures,
increased international movement and
ineffective vector control programme as
well as climate change have been said to
contribute to the spread of the disease
(Knowlton et al., 2009). Currently, the
world was alerted with new emerging
mosquito-borne disease, Zika. This disease
shared similar vector with dengue, which
is Aedes aegypti. WHO (2016) reported
Asian countries such as Singapore,
Philippines, Malaysia, Vietnam and
Thailand continue to report new cases.
However, it is uncertain whether the
recently increase in the number of reported
Zika cases is due to an actual increase in
the incidence or whether this is the result
of enhanced surveillance and awareness.

The presence and abundance of Ae.

aegypti and Aedes albopictus are vital to
the transmission of dengue. In the absence
of vaccination and effective drugs, vector
control has been considered as a vital tool
in the prevention and control of DF, DHF
and chikungunya virus infection (WHO,
2011), largely by community involvement
through insecticide application, source
reduction and public awareness campaign
(Corbel et al., 2004; Farias et al., 2009).
With these approaches, comes the need for
rapid and accurate estimations of the

existing field population size and dynamics.
The recent advances in computer

technology have generated a considerable
interest in population modelling, with the
aim of getting better insights into the
complexities of population dynamics,
mosquito control and disease transmission.
Mathematical modelling becomes an
interesting tool for creating forecast and
control strategies of the vectors (Focks et

al., 1995; Rohani et al., 2011). The current
indices used for Aedes surveillance are not
sensitive and accurate enough for
forecasting vector densities and dengue
outbreaks (Focks et al., 2000; Focks,
2003; Nazri et al., 2012a). Therefore,
mathematical models were introduced as
tools that are more accurate and useful in
creating an early warning mechanism for
the prediction and forecasting of dengue
outbreaks. Dengue forecasting models have
gained much interest in the past decades.
Review of literature on the subject shows
that a relationship exists between vector
population and dengue incidence (Mahadev
et al., 2004; Tewari et al., 2004; Gubler,
2005; Chadee, 2009; Luz et al., 2009).
Previous studies also tend to use historical
data of dengue incidence instead of vector
population data to predict dengue
occurrence (Nor Azura & Naomie, 2008;
Hii et al., 2009; Rohani et al., 2011; Nazri
et al., 2012b; Wongkoon et al., 2012).
However, previous studies did not indicate
the severity of vector occurrence and
infestation. Adult mosquito abundance can
be predicted using generalized linear
models (GLM). Interaction between lagged
temperature, relative humidity and one
week lagged mosquito abundance is
significantly influenced the current
mosquito abundance (Simões et al., 2013).
In addition, mosquito population dynamics
are not the same in different geographical
areas. The occurrence of dengue is
probably area specific due to the climate
influence (Scott & Morrison, 2003).
However, in dengue hotspot areas where
space spraying and other vector control
programmes are regularly conducted,
climate will have low predictive power for
vector abundance. Therefore, a more
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reliable model that is independent of
environmental parameters is needed as a
predictor to forecast vector population
abundance.

In the present study, Autoregressive
Integrated Moving Average (ARIMA)
models were used to generate the temporal
dependence structure of a time series for
early prediction of Aedes egg population
abundance. The main characteristic of
time-series modeling is that it only models
the relationship between the observed
number of eggs at time t (y

t
) from the past

observations (y
1
, y

2
, …, y

t-1
), without using

any other variables. The main objective of
this study is to develop univariate time-
series models to estimate and forecast the
fluctuation of Aedes egg abundance in
selected dengue hotspots using vector
population data alone. This forecasting
offers the potential for improved
contingency planning of public health
intervention.

MATERIALS AND METHODS

Data source and study sites

In this study, the data for Aedes eggs were
collected using ovitraps from February
2008 to March 2010. The ovitrap survey
was carried out in three locations in Penang
Island where dengue transmission is
common: Permatang Damar Laut (PDL)
(05.27544º N, 100.27104º E) a suburban
coastal area; Sungai Nibong Kecil (SGN)
(05.33001º N, 100.28722º E) an urban
squatter area; Sungai Dua (SG2) (05.35076º
N, 100.30251º E) an urban area. The ovitrap
survey was conducted outdoors in order to
examine the outdoor breeding potential of
Aedes mosquitoes in artificial containers.

a)  Permatang Damar Laut (PDL)

PDL is a suburban area located close to the
sea and approximately 1km from Penang
International Airport in the southwest
district of the island. This area was listed
as a dengue hotspot in 2005 (KKM, 2005)
and continuously recorded dengue cases
throughout the study period. The houses in
the area are built systematically, however

some of these houses are surrounded by
bushes that are rarely cleared and there are
many garbage dump sites made by
villagers.

b)  Sungai Nibong Kecil (SGN)

SGN is a squatter residential area of a
township in the Southwestern coastal area
of Penang Island. This area is the most
important dengue hotspot in Penang
(Maimusa et al., 2017). The area has poor
vegetation cover characterised by the
presence of shrubs along the drainage
system which separate the area from a
construction site. The houses in the area,
often wooden or brick houses with zinc
roofing sheets are built close to one another.
There are also several abandoned and
dilapidated houses in the area. The
drainage system is very poor and often
clogged with waste, thus the area is
regularly flooded during rainy seasons.
Discarded artificial containers and plastic
bags can be found littered in the
surrounding area of houses. All homes have
a tap water supply system, but in some,
householders store water in cement tanks
for bathing and washing purposes.

c)  Sungai Dua (SG2)

SG2 is an urban residential area consisting
of ten blocks of flats, each separated by
small roads and parking lots. A small river
flows alongside the buildings and the area
is surrounded by shrubs, weeds and banana
plants. The drainage and sanitation system
are generally adequate but garbage in the
form of artificial containers are often
dumped into the drainage system that
separates the flats and shop lot area. There
are welding and auto repair shops nearby
with an accumulation of discarded tires and
unwanted vehicles parts.

Trapping, Collecting and Identification

of Aedes mosquitoes

Ovitraps were used to determine
abundance of Aedes mosquito populations
in this study. The ovitraps were made of
milk tin cans sized 15 cm high and 7.5 cm
in diameter. All the cans were coated on the
outer and inner surfaces with black glossy
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paint prior to use. The oviposition substrate
used in each can was a hardboard paddle,
measuring 3 cm in width, 12.5 cm in length
and 0.3 cm thick, which was placed in the
can lengthwise with the upper (dry) portion
resting against the upper rim of the can and
the bottom half of the paddle submerged in
the water.

Ovitraps were placed outdoors at
selected houses. Thirty ovitraps were
placed on the ground at each sampling area
with a distance of at least 10 m between
each ovitraps. The ovitraps were half-filled
with seasoned tap water and a paddle was
placed in each ovitrap as an oviposition
substrate, which was replaced every six
days.

Sample size was calculated using
negative binomial model (Elliot, 1973). A
reasonable estimate of the field population
density as one that performs with a standard
error less than 40% (Elliot, 1973). Based on
preliminary sampling, this sample size (30
ovitraps) collected more than 75% of the
total egg population from each site. This
was sufficient for egg population
representation.

Servicing of ovitraps was done every
six days throughout the 26-months (108
weeks) study period from February 2008 to
March 2010. Servicing of ovitraps involved
the collection and replacement of paddles,
cleaning the cans and replenishing the
water in each can. The content of each
ovitrap (water and larvae) was poured into
individual zip-lock plastic bags (26 cm x 18
cm), sealed and labelled. The paddles were
also placed in individual plastic bags and
brought back to the laboratory for egg and
larvae counting. Each paddle was
examined under a dissecting microscope to
count and record all eggs present. The
number of eggs (from each paddle) and
larvae (in the water from each ovitrap)
were then pooled together and counted as
eggs. Mosquito species identification was
carried out by hatching the eggs and
rearing the larvae until the emergence of
adults. Upon emergence, the adults were
identified to species level using keys by

Rueda (2004) and the number of species
per ovitrap was recorded. The egg data
were summed up and averaged to create
mean weekly egg per ovitrap according for
each study site.

Non seasonal Box-Jenkins (1970)

components

The ARIMA is used to determine the
patterns and estimate values of time series
data (Box & Jenkins, 1970). The parameters
of the ARIMA model were assessed using
the Statistical Package for Social Sciences
(SPSS) package version 21.0. There are
four steps involved in ARIMA process;
identification, estimation, diagnostic
checking and forecasting.  Each of these
four steps is explained by the egg
abundance. In the identification process, the
ACF and PACF generated from the data
series are used as a guide to choose one
or more ARIMA appropriate models.
Comparisons are made between the
estimated ACF and PACF from the
observed data with various theoretical ACF
and PACF. A tentative model which has
theoretical ACF and PACF functions that
most resemble the estimated ACF and
PACF is chosen. In the estimation process
which involves estimating the general
fitness of the generated models, a model is
considered fitting if it satisfies certain
statistical criterion. This is done by firstly
estimating the parameters (coefficients)
and secondly generating the estimated
values for the observations. The estimation
process will search for estimated
coefficients that minimize the differences
between the actual and the forecasted data.
The estimated coefficients are also
subjected to certain conditions known as
stationarity and inevitability conditions.

ARIMA procedure: The autoregressive
integrated moving averages (ARIMA)
model is built from three components. They
are Autoregressive (AR), time series after
differenced (d) and Moving Average (MA)
components. Various combinations of AR
and MA will produce different models.
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The AR procedure of order (p) is:

Y
t
 = µ + φ

1
Y

t-1
 + φ

2
Y

t-2
 + . . . + φ

p
 Y

t-p
 . . . + ε

t

The MA procedure of order (q) is:

Y
t
 = µ – θ

1
ε

t-1
 – θ

2
ε

t-2
 – . . . – θ

q
 ε

t-q
 . . . + ε

t

ARIMA model equation (p, d, q) is:

Y
t
 = φ

1
Y

t-1
 + φ

2
Y

t-2
 + . . . + φ

p
 Y

t-p
 . . . + µ – θ

1
ε

t-1

– θ
2
ε

t-2
 –. . .– è

q
 ε

t-q
 . . . + ε

t

Where ε
t
’s are independent, normally

distributed, zero mean and constant
variance σ2 for t = 1, 2,...n.

Model adequacy analysis: The values of
Root Mean Square Error (RMSE),
Maximum Absolute Percentage Error
(MaxAPE), Mean Absolute Percentage
Error (MAPE), Mean Absolute Error
(MAE), Maximum Absolute Error
(MaxAE), R2, Stationary R2 and Normalized
BIC are commonly used to assess the time
series model adequacy. Lowest value for
each reliability statistics indicate the
model efficiency to estimate and forecast
of the egg abundance.

The estimation and diagnostic
checking procedures may be performed
repeatedly, going back and forth, each time
revising and improving the model until an
estimated model superior to other models
which satisfies all assumptions is found.
The best model is obtained with diagnostic
of Bayesian’s Information Criteria (BIC).
Lower value of BIC was preferable.

The Q statistic was used in order to
determine the residual adequacy. The
formula is:

Q  = n(n+2)Σr
k

2

(n-k)

r
k  

=  The residual autocorrelation at lag k
n   =  The number of residuals

The value obtained from Q statistic will be
compared with Chi square distribution
critical value. The model is considered
poor if the p-value of Q statistic is low (p <
α).

Once the model’s fitness has been
confirmed, it is then ready to be used to
generate the forecasts for future values.
The forecast values may be in terms of
single-valued items or in terms of
confidence intervals. The confidence
interval estimates provide the probabilistic
measures of certainty and uncertainty
associated with the forecast values.

Performance or suitability of the model
for making forecasts can be investigated by
comparing forecast values and real
observed values. The criterion normally
used to differentiate between a poor
forecast model and a good forecast model
is called the error “measure”. Typically, for
a time series of length N, the ARIMA model
is usually estimated using {Y

1
,Y

2
,…Y

N-m
}.

The forecasting ability of the model is then
tested on the remaining m observations.
These m observations are sometime
referred to as holdout observations. The
holdout is a historical series point that is
not used in the computation of the model
parameters, thus removing its effect on the
computation of forecasts. By forcing the
model to predict values that actually
known (observed values), the model
forecasting ability can be evaluated. Thus,
m is chosen such that the within-sample
observations consist of 95% of the original
sample series. This method was illustrated
in the present study by holding out the data
from week 98 through week 108 in each
data series (PDL, SGN and SG2). The data
prior to week 98 are used to build the model
which is then used to forecast the mean
number of eggs in week 98 to week 108.

All tests were conducted at the 5%
level of significance, and data analysis was
performed using the Time Series analysis
(ARIMA) in Statistical Packages for Social
Science version 21.0 (SPSS 21.0).

RESULTS

Permatang Damar Laut (PDL)

The autocorrelation function (ACF) and
partial autocorrelation function (PACF)
correlogram of the PDL mean number of
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eggs were generated for a lag of 26 and are
shown in Figure 1A and 1B respectively.
The ACF of PDL tails off rather sharply;
indicating that the mean of the series is
stationary. As shown in Figure 1B, the
PACF of the series seems to cut off at lag
number one and PACF at other lags are
generally small and insignificant. No
obvious seasonal pattern is observed on
both ACF and PACF. Thus, the observations
suggest that the PDL series follows ARIMA
(1, 0, 0) model.

The PDL series was then fitted with the
ARIMA (1, 0, 0) process along with the
constant and the result is shown in Table
1a. Since the coefficient of AR (1) is
significant at the 5% level and the
stationary condition is satisfied, analysis is
further carried out by checking the
adequacy of the model and generating plots
of the ACF and PACF residuals (Figure 2).

Generally, all the ACF and PACF of the
residuals fall within Bartlett’s intervals
(Figure 2). The plots also show that the
individual residuals are white noise and
group residuals was not significant
(χ2=23.384, df = 17, P>0.05) which is
indicated by the Box-Ljung Q statistic. This
suggests that the individual and group
residuals are not autocorrelated. In
addition, this model has minimum
normalized BIC (Table 1b). Thus, the
ARIMA (1,0,0) model fitted to PDL series is
adequate and able to fully capture the
autocorrelation among the observations.

Thus, the general form of ARIMA (1,0,0)
model is as follows:

Y
t
 = c + φ

1
Y

(t-1)
 + ε

t
(1)

Where c is the constant, φ
1
 was  the

parameter or the model coefficient and ε
t

was a time-series of random shocks or
white noise process at time t. The
coefficients were estimated as an
autoregressive φ

1
 = 0.702 (t

1
 =9.548, p<0.05)

and the autoregressive coefficients were
very close to their limit of stationarity, -
1<φ

1
<1. The final model is as follows:

Y
t
 = 29.190 + 0.702Y

(t-1)
 + ε

t
(2)

This model revealed that the mean
number of eggs per ovitrap at time t were
approximately 70.2% of the mean number
of eggs per ovitrap at time t-1 plus a white
noise process. The observed and fitted
mean number of eggs from week 1
(February 2008) to week 97 (January 2010)
matched reasonably well (Figure 5A). The
estimated data (fitted values minus
observed values) were normally distributed
(Shapiro-Wilk, p > 0.05). No significant
difference was found between the actual
number of eggs and the fitted number of
eggs by the ARIMA (1,0,0) model
(independent t-test t = -0.11, df = 96, p =
0.991).

The model in equation (2) was used to
forecast the mean number of eggs at time t
(Y

t
) for 11 sequential future weeks (i.e.

week 98-week 108) based on the last
obtainable data point Y

97
 (i.e. mean number

of eggs in week 97) as the forecasting
origin. The ARIMA (1,0,0) model is capable
to forecast the number of eggs per ovitrap
from 1 to 4 weeks before sampling is
carried out. The forecasted values minus
observed values were normally distributed
(Shapiro-Wilk p > 0.05). The actual number
of eggs and the forecasted number of eggs
was not significantly different (Independent
t-test t = -2.442, df = 3, p = 0.092). The mean
number of eggs after the fourth week of
forecast increased and reached a maximum
forecasted level in week 108 (March 2010)
(Figure 5A). The forecasted values after
week 100 began to level out because the
autoregressive (AR) process was no longer
influencing the forecast.

Sungai Nibong Kecil (SGN) and Sungai

Dua (SG2)

The Figures of ACF and PACF are shown
in Figure 1C and D, and 1E and F for SGN
and SG2 respectively. In the SGN series, the
tentative ARIMA models are described and
the chosen model has a minimum
normalized BIC (Bayesian Information
Criterion). Similarly, the same criteria were
applied for the SG2 series but with the
differentiation process.
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Figure 1. ACF and PACF of the mean number of eggs per ovitrap in different study sites.
The letters [A, B] refer to ACF and PACF in PDL accordingly; [C, D] and as [E, F] indicate
the same parameters in SGN and SG2 respectively.
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Figure 2. ACF and PACF of the residuals of the ARIMA (1,0,0) model.

Table 1a. Estimated model parameters of ARIMA (1,0,0) with constant
and model statistics

Variable Coefficient S.E. t-statistic p-sig

C 29.190 4.276 6.826 0.000
AR(1) 0.702 0.074 9.548 0.000
Stationary r2 0.495
R2 0.495
RMSE 12.822
MAPE 50.950
MaxAPE 363.427
MAE 9.666
MaxAE 44.981
BIC 5.197

and SG2 respectively. For the SGN series,
the model with the best fit is ARIMA
(2,0,0). While ARIMA (0,1,1) was the most
suitable model for SG2 series as this model
had the lowest BIC value.

The ACF and PACF of the residuals for
SGN are shown in Figure 3. All lags of ACF
and PACF residuals fall within the Bartlett’s
intervals. Thus the individual residuals are
white noise and the Box-Ljung Q test was
not significant (χ2 =19.241, df=16 p>0.05)
which suggest that the residuals are not

Table 1b. BIC values of ARIMA
(p,d,q)  for PDL series

ARIMA (p,d,q) BIC values

(1,0,0) 5.197
(2,0,0) 5.206
(3,0,0) 5.221

The parameters of the models together
with normalized BIC values are presented
in Tables 2a and b and 3a and b for SGN
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Table 2a. Estimated model parameters of ARIMA (2,0,0) with constant
and model statistics for SGN

Variable Coefficient S.E. t-statistic p-sig

C 38.150 7.134 5.347 0.000
AR(1) 0.502 0.099 5.051 0.000
AR(2) 0.273 0.099 2.746 0.007
Stationary r2 0. 529
R2 0. 529
RMSE 16.551
MAPE 48.915
MaxAPE 309.453
MAE 12.204
MaxAE 49.503
BIC 5.754

Table 3b. BIC values of ARIMA
(p,d,q) for SG2 series

ARIMA (p,d,q) BIC values

(0,1,1) 5.787
(0,1,2) 5.827
(1,1,1) 5.850
(2,1,0) 5.881

Table 3a. Estimated model parameters of ARIMA (0,1,1) with constant
and model statistics for SG2

Variable Coefficient S.E. t-statistic p-sig

MA(1) 0.596 0.079 7.518 0.000
Difference 1
Stationary r2 0.214
R2 0.529
RMSE 17.670
MAPE 46.492
MaxAPE 309.453
MAE 409.932
MaxAE 12.223
BIC 79.247

Table 2b. BIC values of ARIMA
(p,d,q) for SGN series

ARIMA (p,d,q) BIC values

(1,0,0) 5.754
(2,0,0) 5.790
(3,0,0) 5.792
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Figure 3. ACF and PACF of the residuals of the ARIMA (2,0,0) model for SGN.

Figure 4. ACF and PACF of the residuals of the ARIMA (0,1,1) model for SG2.

autocorrelated. The general form of ARIMA
(2,0,0) model is as follows:

Y
t 
= c + φ

1
Y

(t-1)
 + φ

2
Y

(t-2)
 + ε

t
(1)

Where c is the constant term, φ
1 
and φ

2
 were

the parameters or the model coefficients

and ε
t
 was a time-series of random shocks

or white noise process at time t. The
coefficients were estimated as an
autoregressive φ

1 
= 0.502 (t

1
 =5.051, p<0.05)

and autoregressive φ
2
 = 0.273 (t

2
= 2.746,

P<0.05). The autoregressive coefficients
values follow their limit of stationarity
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conditions, φ
1
 + φ

2
 <1, -1< φ

2  
<1, φ

1
 – φ

2
 <1.

The final model of ARIMA (2,0,0) for SGN
is as follows:

Y
t
 = 38.150 + 0.502Y

(t-1)
 +

0.273Y
(t-2)

 + ε
t

(2)

This model revealed that the mean
number of eggs per ovitrap at time t were
approximately 77.75% of the mean number
of eggs per ovitrap at time t

-1
 plus a white

noise process. The model demonstrates that
the current mean number of eggs in SGN is
influenced by the mean number of eggs in
the previous 2 weeks. The observed and
fitted mean number of eggs from week 1
(February 2008) to week 97 (January 2010)
matched reasonably well (Figure 5B).

The model, equation (2), was used to
forecast mean number of eggs at time t (Y

t
)

for 11 sequential future weeks (i.e. week
98-week 108) based on the last obtainable
data point Y

97
 (i.e. mean number of eggs in

week 97) as the forecasting origin. The
ARIMA (2,0,0) model is able to forecast the
number of eggs per ovitrap from 1 to 11
weeks before sampling is commenced. The
observed number of eggs and forecasted
number of eggs did not differ significantly
(Wilcoxon Signed Ranks Test z = -0.711, p
= 0.477). Figure 5B shows the ability of the
model to forecast future egg numbers in
SGN up to an 11 week interval.

Table 4a shows the results of
estimation of coefficients for ARIMA (0,1,1)
model without a constant for SG2 series.
The model coefficient of MA(1) is
significant and the value is less than 1
which fulfils the stationary condition of
MA(1) process.

All lags of ACF and PACF residuals fall
within Bartlett’s intervals, indicating that
the individual residuals are white noise
which means there was no autocorrelation.
The Box-Ljung Q test is insignificant (χ2 =
12.438, df = 17, p > 0.05) suggesting that the
residuals were also not autocorrelated as
a group. The results show that ARIMA
(0,1,1) is the most adequate model and
satisfies the rule of parsimony for SG2 data
series.

The general form of the ARIMA (0,1,1)
model is as follows:

Y
t
 = Y

t-1 
+ ε

t
 – θ

1
ε

(t-1)
(1)

Where θ
1 
 is the moving average parameter

or the model coefficient, ε
t-1

 is the error
term or white noise process at time t-1

. 
The

coefficients were estimated as moving
average θ

1
 = 0.596 (t

1
 =7.518, p<0.05),

coefficient values were stationary (-1< θ
1

<1) and ε
t
 was distributed with a mean 0

and variance 1.

The final model is as follow:

Y
t
 = Y

t-1 
+ ε

t
 – 0.596ε

(t-1)
(2)

The current value mean number of eggs
per ovitrap at time t (Y

t
) is therefore, a

weighted average of past values plus an
innovation. This model demonstrated that
the current mean number of eggs in SG2
was influenced by the number of eggs in
the previous week. Figure 5C shows that
the predictions from ARIMA (0,1,1)
performed reasonably well for both
training and validation data from week 1
(February 2008) to week 97 (January
2010). The data for this model were
normally distributed (Shapiro-Wilk p >
0.05) and no significant difference was
found between the actual and fitted number
of eggs (independent t-test t= -0.565,
p=0.574).

This model is capable of forecasting the
number of eggs per ovitrap from 1 to 2
weeks before sampling. However, after the
short interval of one to two weeks, the
forecast values in the model essentially
‘levels out’ (Figure 5C). This characteristic
occurred when the moving average (MA)
ceased to affect the forecast, which means
the model is no longer able to forecast egg
abundance. Therefore, MA is more suitable
for short term forecasting of one to two
weeks.
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Figure 5. Observed, fitted and forecast data of Aedes eggs for PDL (A), SGN
(B) and SG2(C) series.
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DISCUSSION

The present study clearly showed that a
population model based on the population
count can be developed using time series
analysis which is ARIMA. Based on the
results, the estimated data plots are
corresponding to the actual data.

The model ARIMA (1,0,0) successfully
forecasted the egg abundance pattern in
PDL from 1 to 4 weeks before sampling was
conducted, while ARIMA (2,0,0) was able
to forecast the egg abundance in SGN from
1 to 11 weeks before commencement of
sampling. For autoregressive models
ARIMA (1,0,0) and ARIMA (2,0,0), each
value in the model (autoregression) is a
weighted average of recent values of the
series. Since these values are weighted
averages of previous values, the effect of a
given disturbance in an autoregressive
process decrease as time passes. The
model ARIMA (0,1,1) was able to forecast
the mean number of eggs in SG2 one week
prior to sampling. This model is a moving
average process where each value in the
series is an average of the most recent
residuals. The residual affects the system
for a finite number of periods (the order of
the moving-average) and then briskly stops
to affect it. Therefore in practical terms,
autoregressive (AR) processes are more
useful for modelling longer-term effects as
demonstrated in PDL and SGN series, while
moving average (MA) processes are more
useful for modelling short-term fluctuations
as demonstrated in SG2 series.

The vector density forecast as
demonstrated in the present study could
alert health officials to intensify mosquito
control efforts and to inform the public
about the increased risk of acquiring
dengue. Conventional vector control is
usually conducted after dengue outbreaks
are reported (Rohani et al., 2011).
Therefore, once the dengue virus is
introduced into a human population through
the vectors, it is often too late to kill the
infected mosquitoes. Thus fogging after or
during the outbreak has little impact on the
spread of the disease and by the time an

outbreak is reported, 7-10 days would have
passed before control is conducted.
Therefore, by using forecasting models
such as ARIMA, control measure can be
conducted before the outbreak occurs.

To use the ARIMA models for the
mosquito control programme, three vital
information is required. The first
information is the number of dengue cases
occurring in the area. The information on
dengue cases is to determine the onset
level before the egg population number
reaches the risk of dengue transmission.
The second information is the cost of
chemical control (i.e. fogging and ULV).
This information can be used to estimate
the cost of control interventions. The third
information is a constant record of Aedes

egg populations to be incorporated in the
models to forecast when the Aedes

population will essentially reach the
transmission risk which will help create
more cost-efficient control programmes.

The Malaysian Ministry of Health
(MOH) has documented the number of
dengue cases and chemical interventions
conducted in the areas. Thus, the MOH only
needs to maintain a constant collection of
ovitrap data. The continuous egg data
collection will permit the variation in the
Aedes population to be quickly integrated
with the developed model.  To ensure the
success of vector management and to
reduce dengue transmission risk in the
area, it is crucial for the vector
surveillance information to be recorded
constantly although it might be tedious to
collect data continuously.  Using the ARIMA
models to forecast Aedes populations
requires the MOH operator or personnel to
take a small sample size, for example 10-
30 ovitraps per week, depending on the size
of the area. With sufficient data, it may
prove possible to apply ARIMA models for
biweekly or monthly ovitrap data
depending on the type of forecast that is
required, whether biweekly or monthly
forecasts. In dengue hot spot areas, a more
frequent data collection schedule might be
more meaningful in terms of producing
more accurate predictions.
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The abundance of mosquito vector
strongly related to disease transmission.
Therefore by recognizing the biological and
environmental factors that contributed to
vector abundance will assist  the Ministry
of Health to estimate the suitable period for
the most economical and effective vector
control programme. ARIMA models provide
useful tools for administrators and the
Ministry of Health in planning the budget
required in mosquito control programmes
and the exact time to start interventions.
This model can also be used to optimize
dengue prevention by providing estimates
on vector population fluctuations. Accurate
predictions for even a few weeks ahead as
demonstrated in the present study provides
an invaluable advantage as it provides an
opportunity for fast mobilization of
preventive vector control measures or
prepared for hospital demand. Previous
researchers (Regis et al., 2008) used egg
averages to recognize areas with high
vector abundance. Arboviral surveillance
activities were increased corresponding
with the increase of vector population in
order to prevent dengue and other vector
borne diseases. Information on the type of
virus circulating, vector control
programme and vector abundance forecast
in the particular area can be an early
warning system components of dengue
transmission risk (Rohani et al., 2011).

The findings of the present study
demonstrate that vector egg data from
constant surveillance together with simple
time series model is adequate to produce
prediction on the peaks of vector
abundance. Authorities such as Ministry of
Health or Municipal council can adopt
these approaches to obtain optimum vector
control and thus decrease the risk vector
borne disease among the community.

Urbanization and population growth
in Penang Island has fostered the dengue
fever transmission especially in residential
areas where inappropriate waste manage-
ment at the household level has created
an abundance of artificial containers in
the surrounding premises which will
eventually become mosquito breeding sites.
Information from epidemiological data in

Malaysia shows that dengue virus infection
is predominantly in urban areas, where
61.8% of the total population lives, in
which rapid industrial and economic
development has created many man-made
opportunities for Aedes mosquito breeding
(Teng, 2001). In southern Malaysia, 76% of
dengue fever cases are reported within
residential areas followed by 8% from
squatter areas and 5% from rural areas
(Seng et al., 2005). This information has
reaffirmed the association of dengue
transmission with common breeding
grounds associated with humans especially
in developing and domestic environments.
Surveys on human behaviour in regards
to key activities which could encourage
dengue transmission such as gardening and
waste management might reveal important
information regarding the widespread
occurrence of dengue fever in the domestic
environment. Entomologic surveys (i.e.
larval and pupal surveys) that might assist
in determining possible breeding site
attributes of the dengue vectors, coupled
with the time series model proposed, will
produce a very effective and reliable early
warning tool to combat dengue outbreaks.
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