

REVIEW ARTICLE

Blastocystis in captivated and free-ranging wild animals worldwide: a review

Sanggari, A.¹, Komala, T.², Rauff-Adedotun, A.A.¹, Awosolu, O.B.¹, Attah, O.A.¹, Farah Haziqah, M.T.^{1*}

¹School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

ABSTRACT

²Department of Biochemistry, Faculty of Medicine, Quest International University, 122A, Jalan Haji Eusoff, 30250 Ipoh, Perak, Malaysia

*Corresponding autho: farahhaziqah@usm.my

ARTICLE HISTORY

Received: 1 June 2022 Revised: 14 July 2022 Accepted: 14 July 2022 Published: 30 September 2022 *Blastocystis* is the most prevalent eukaryotic gastrointestinal symbiont found in humans and animals worldwide. Increased human infection rates are associated with raising concerns about the involvement of the parasite in public health. Over the last decade, the number of linked epidemiology studies has been prudently grown. Microscopy has been used to detect the presence of protozoan and the advent of molecular techniques has made detection easier. However, due to its limited host specificity and zoonotic potential, animals, either livestock or wildlife animals, may serve as a potential reservoir for *Blastocystis* infection transmission. The approach utilised in this study aided in understanding the distribution and prevalence of *Blastocystis* in animals, particularly captivated and free-ranging wild animals worldwide due to increased interest. This review will help comprehend the epidemiological aspects, demographic, subtypes, and the zoonotic potential of *Blastocystis* in wildlife and captive animals.

Keywords: Blastocystis; captive; subtype; wildlife; zoonotic.

INTRODUCTION

Blastocystis was first discovered in human faecal samples over a decade ago by Alexeiff (Petrášová *et al.*, 2011). It is a ubiquitous anaerobic protist that infects the gastrointestinal tract of both animals and humans (Ahmed & Karanis, 2019). The faecal-oral pathway is the means of spreading this single-celled eukaryote (Tan & Suresh, 2006; Alfellani *et al.*, 2013b). Inadequate sanitary conditions by humans or animals could explain the high parasite prevalence seen in impoverished countries compared to developed countries (Ahmed & Karanis, 2018). *Blastocystis* sp. infection is associated with various non-specific intestinal disorders including diarrhoea, stomach pain, skin rash or urticaria, flatulence, vomiting, and constipation (Stensvold *et al.*, 2012).

The four most common morphological forms of Blastocystis are cystic, vacuolar, granular, and amoeboid. The vacuolar and granular forms are the most common form observed (Boreham & Stenzel, 1993). Significant genetic diversity has been observed within the Stramenopiles group according to a comparative investigation of small subunit rRNA gene sequences (SSU rRNA) (Ahmed & Karanis, 2019). Blastocystis sp. subtypes (STs) 1-9 nomenclature was originally introduced in 2007, after which many new subtypes were proposed. By 2013, 17 STs (ST1 to ST17) had been identified across several hosts, each with sufficient genetic variation to be designated as a separate species (Alfellani et al., 2013b; Stensvold & Clark, 2020). Currently, a total of 29 subtypes have been proposed. Out of these, the legitimacy of four subtypes (ST18, ST19, ST20, and ST22) is under question due to the possibility that they were created from artefacts which are based on their chimeric appearance (Stensvold & Clark, 2020). The remaining 25 subtypes (ST1 to 17, ST21, ST23-29)

have met the currently recommended criteria for unique subtype designations (Maloney & Santin, 2021). Furthermore, ten subtypes namely ST1-9 and ST12 have been discovered in humans with varying occurrence levels (Greige *et al.*, 2019).

The article is a compiled study on the distribution and genetic variation of *Blastocystis* in wild and captive wild animals worldwide in the last decade. Important data on the prevalence, distribution and predictors of *Blastocystis* sp. infection and its subtypes in wildlife animals will aid in understanding the host (Andersen & Stensvold, 2016).

MATERIALS AND METHODS

Research articles on the distribution of Blastocystis in captivated and free-living wild animals around the world were collected based on search results against Google Scholar, ResearchGate, PubMed and ScienceDirect databases. The keywords used in the search were Blastocystis, wildlife, STs, subtypes, zoonotic transmission, zoo animals, captive animals, primates, rodents, artiodactyla, marsupial, birds, carnivora, proboscidea, reptiles, rodentia, perisodactyla, characterisation, life cycle, molecular, genetic diversity and animals. Duplicate articles from all the databases were identified and removed. Additionally, the unclear and confusing articles were also removed. The articles chosen were those written in English and focused on Blastocystis in free living wild animals and captivated wild animals in zoological gardens worldwide. Articles reporting both parasitological and molecular methods of detection have also been chosen. Country/region, host, number of positive samples, subtypes of the animal examined, number of animals for each subtype, and references were the variables recorded.

RESULTS AND DISCUSSION

Distribution of *Blastocystis* sp. in captive and wild animals worldwide

A total of 99 selected articles related to *Blastocystis* in captivated wild animals and free-living wild animals from different taxonomic groups namely, non-human primates, artiodactyl, marsupial, birds, carnivora, proboscidea, reptiles, rodentia, and perissodactyl worldwide were reported in this review. These animals were associated with *Blastocystis* sp. infection with ST1, ST2, ST3, ST4, ST6, ST10, ST11, and ST13 being the most recognised subtypes. Mixed subtypes most likely a combination of ST1, ST2, ST3, and ST5 are commonly found in wildlife whereas the least common subtypes are ST15 and ST17. However, ST16 is the only subtype that has not been reported. The most extensive studies on *Blastocystis* in wildlife animals were mostly reported from Australia and China in which high *Blastocystis* diversity was primarily reported from China.

Distribution of *Blastocystis* sp. in different groups of captive and wildlife animals

Non-human primates (NHP)

Studies on Blastocystis in non-human primates (NHP) was reported from 27 countries with the prevalence rate ranging from 2% to 100% (Table 1). The pathogenic significance of Blastocystis in non-human primates remains largely unknown. To date, China, Australia, and the United Kingdom witnessed the most diverse species being examined. Specifically, 29 groups of animals from China, 19 from Australia and 21 from the United Kingdom were observed. Meanwhile, a study from Tanzania by Petrášová et al. (2011) reported a higher number of individuals examined with 206 chimpanzees (Pan troglodytes) and 111 vervet monkeys (Chlorocebus aethiops pygerythrus) and 49 mantled guereza (Colobus guereza). Several different subtypes were identified in these animal hosts with ST1 and ST2 being predominant, followed by ST3. These subtypes were also commonly found in humans. The frequent identification of these subtypes in non-human primates supports suggestions that they may be the reservoir for these subtypes.

Notably, evidence of zoonotic transmission via the faecal-oral route between these animals and humans was shown mainly in animal handlers in zoological gardens as reported by Parkar *et al.* (2010). At the same time, Yoshikawa *et al.* (2009) reported on *Blastocystis* ST2 transmission in monkeys and children in Nepal. Nevertheless, Helenbrook *et al.* (2015) elucidated there was no *Blastocystis* cross-transmission between humans and non-human primates despite close proximity in some instances in north-western Ecuador due to the lack of shared subtypes between humans and monkeys in which *Blastocystis* ST1, ST2, and ST3 were found in human whereas all monkey samples examined were ST8.

Birds

A wide range of bird species has been examined worldwide after a group of primates with the prevalence rate of *Blastocystis* in birds ranging from 2.1% to 100% (Table 2). The studies that examined birds have long been regarded as potential reservoirs of *Blastocystis* sp. transmission (Noël *et al.*, 2005). The most studied wild bird population was the ostrich (Roberts *et al.*, 2013; Zhao *et al.*, 2017; Cian *et al.*, 2017; Maloney *et al.*, 2020; Deng *et al.*, 2021). There were 13 different subtypes found in wild birds worldwide with ST6 being the most reported subtype followed by ST5 and ST7. Therefore, it was believed that these subtypes might be the major reservoirs for the wild birds. It is important to note that the four most common human subtypes namely, ST1-ST4 were not found in wild bird hosts. However, due to the limited studies, the role of birds, specifically wild birds, as hosts and potential reservoirs of these subtypes is unknown.

There is scientific evidence that wild birds are associated with ST1-8, ST10, ST13, ST14, ST20, ST24, ST27 and ST28. Several novel subtypes were reported, such as ST20, which was unique to the ostriches (Zhao *et al.*, 2017), whereas ST27 and ST28 were only associated with Garganey and Indian peafowls (Maloney *et al.*, 2020). There is no additional subtype reported in Indian peafowls. According to Ramírez *et al.* (2014), ground-dwelling birds are more likely than tree-dwelling birds to be infected with *Blastocystis* due to increased faecal exposure linked with eating behaviour and exposure to exposure parasites prevalent in water. Out of 20 studies on *Blastocystis* in wild birds, only three studies were conducted on free-living wild birds in Iran (Asghari *et al.*, 2019) and Malaysia (Yong *et al.*, 2008); others were captive wild birds.

Country/	Host	No. of						Sub	itype (S1	Ē					Other	ິ 	ndition	Technique	References	
Region		Positive Samples													Mixeo Subty	a pes				
		(%)	H	23	4 5	9	7 8	6	10	11 12	13	14	15	16	17					
	Captivated wild ani	imals																		
Australia	Baboon	2/2 (100)	2													0		IVC, MOL	Parkar <i>et al.</i> (2007)	
	Black and white	2/2 (100)	1		1											0		IVC, MOL		
	Croctod		ſ													C				
	maradile	(DDT) 7/7	V													J				
	Colobus	1/1 (100)													ND	0		IVC, MOL		
	Orang utan	2/2 (100)	2													0		IVC, MOL		
	Ring-tailed	1/3 (66.6)	1													0		IVC, MOL		
	lemur																			
	Spider monkey	1/1 (100)													ND	0		IVC, MOL		
	Vervet monkey	2/2 (100)	1		1											0		IVC, MOL		
	White-cheeked	2/2 (100)	2													0		IVC, MOL		
	gibbon																			
Australia	Hamadryas	3/3 (100)	ŝ													0		MOL	Parkar <i>et al.</i> (2010)	
	baboon																			
	Silvery gibbon	2/4 (50.0)	2													0		MOL		
	Sulawesi	2/4 (50.0)	2													0		MOL		
	crested																			
	macaque															(
	Sumatran	4/4 (100)	7	7												5		MUL		
	orangutan White cheeled	2 / A (EO O)	ſ													C				
	wrinte-crieekeu øibhon	(n.nc) +/z	V													J		MUC		
	Ring-tailed	1/4 (25.0)	1													0		MOL		
	lemur																			
	Black and white	4/4 (100)	4													0		MOL		
	ruffed lemur Tonkean	(001) 2/2	ç													C		IOM		
	macaque	1 - (- 00)	1)				
Australia	Monkey/	1/1 (100)																MOL	Roberts et al. (2013)	
	Macaca sp.								ſ						-0					
	Chimpanzee/	//T0 (/0.U)								'n					SI 1/S			MUL		
	Pan troglodytes Orangitan/	(U UU (OU)		σ											(4)	Ĺ		IOM		
	Ponao abelii	(0.00) 0T (0		n)				
	Gorilla/	10/10 (100)	6	1												0		MOL		
	Gorilla gorilla																			
	François langur/	5/6 (83.3)	S													U		MOL		
	Trachypithecus francoisi																			

China	Cynomolgus	7/8 (87.5)							NA	J	0	M	Zanzani <i>et al</i> . (2014)	
	macadules/													
	faccicularic													
China	Rhesus	28/29 (96.6)	15	5 7					ST19 (1	[] C		NOL	Zhao <i>et al.</i> (2017)	
	macaque/ <i>Maca</i>												~	
	ca mulatta													
	Francois's leaf	1/1 (100)			1					U	2	NOL		
	monkey/													
	Presbytis													
	francoisi													
	Mandrill/	1 /4 (25)		1						U	2	NOL		
	Mandrillus													
	sphinx													
	Golden snub-	41/46 (89.1)	4					37		U	2	NOL		
	nosed monkey/													
	Hinopithecus													
	roxellana													
	De Brazza's	4/5 (80.0)	ſ				1			U	2	NOL		
	monkev/													
	Cerconitherus													
	cercopilitecus													
	neglectus													
	Hamadryas	13/23 (56.5)		9						U	~	MOL		
	baboon/ <i>Papio</i>													
	hamadrayas													
	Chimpanzee/	8/10 (80.0)		∞						U	2	MOL		
	Pan troglodytes													
China	Macaca sp.	13/185	7	3 1					ST2/ ST	L3 C	_	VC, MOL	Zhu <i>et al.</i> (2020)	
		(70.27)							ST1/ST	13				
China	Red-faced	2/4 (50.0)		1 1						U	2	NOL	Ma <i>et al</i> . (2020a)	
	spider monkey													
	De Brazza's	5/5 (100)	1	4						U	~	MOL		
	monkey													
	Mandrill	9/15 (60.0)	S	4						U	2	NOL		
	Francois' Black	2/3 (66.7)	2							U	2	NOL		
	Leaf Monkey													
	Snub-nosed	9/22 (40.9)	9	ŝ						U	2	NOL		
	monkey													
	Chimpanzee	2/15 (13.3)	1		1					U	2	NOL		
	Rhesus	6/18 (33.3)		4 2						U	2	NOL		
	macaque													
	Crab-eating	3/13 (23.1)		2 1						U	2	NOL		
	macaque													
	Japanese	6/33 (18.8)		5 1						U	2	NOL		
	macaque													
	White-cheeked	1/4 (25.0)	1							U	2	NOL		
	gibbon													
	Ring-tailed	7/16 (43.8)		2	m	2				U	2	NOL		
	Lemur		ı		¢					(Ī		
	Squirrel	9/30 (30.0)	7		2					C	_	MOL		
	попкеу													

China	Alpacas/ Vicugna pacos	87/366 (23.8)			C	()	MOL	Ma <i>et al</i> . (2020b)
China	Tibetan macaque/ <i>Macaca</i> <i>thibetana</i> Golden monkey/ <i>Rhinopithecus</i>	0/3 (0) 1/2 (50.0)			1	0 0	Том	Chen <i>et al.</i> (2021)
China	Macaque Golden monkey Northern pigtail macaque Green monkey Eastern black- and-white colobus Crab-eating macaque Japanese macaque Squirrel monkey Chimpanzee Orangutan Gorilla Patas monkey Eastern black and white-browed monkey	66 2 2 2 4 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	1 1 1 1 7 1 1 9	м <u>н</u> нни и				Zhang <i>et al.</i> (2021a)
	Woolly monkey	*8	2 2	1 3		U	MOL	Scicluna <i>et al.</i> (2006)
United Kingdom	Unidentified primate Stump tailed macaque	1 *	L	5 1 1		0 0	NOL	

United	Woolly	21*		2 5	1		1			U	MOL	Alfellani <i>et al</i> . (2013a)
Kinadom	, montavi/						'n					
NIIBUOIII							ŋ					
	гадотинх											
	lagotricha											
	Allen's swamp	4*		4						U	MOL	
	monkey/											
	Allenopithecus											
	nigroviridis											
	Barbary	5*		S						U	MOL	
	macaque/											
	Macaca											
	sylvanus											
	Mantled	*œ		2					ND (1)	J	MOL	
	guereza/											
	Colobus											
	auereza											
	Orangutan/	12*	4	4 7		0				C	MOI	
	Pondo	1				I				I	1	
	pyginaeus	1								(
	King Colobus/	÷.		Η						υ	MOL	
	Colobus											
	polykomos											
	Diana monkey/	4*	1	2					ND(1)	U	MOL	
	Cerconithecus											
	diana											
	-	÷		Ċ						(()	
	Hamadryas	7*		7						5	MUL	
	baboon/ <i>Papio</i>											
	hamadrayas											
	Patas monkey/	5*	1	4						U	MOL	
	Erythrocebus											
	patas											
	Gibbon/ <i>aibbon</i>	13*	m	2 1		1	ы	1		U	MOL	
	us											
	Howlor	* 0					'n			Ĺ		
		n					n			ر	IVIUL	
	monkey/											
	Alouatta caraya											
	Leaf monkey/	6*		ε		2	1			U	MOL	
	Presbytis											
	francoisi											
	Crested black	* ت		ſ						ر	MOI	
		ſ)	_					J	201	
	macaque/											

										- (Betts et al., 202				, CM Abe <i>et al.</i> (2003)	CM,	L Yoshikawa <i>et al.</i>	- Yoshikawa et al.		- Yoshikawa <i>et al.</i>													
			MOI				MOI		MO	MOI		MO		IVC.	IVC.	OW	MO		MOI		OW			MOI				MON			MOI	
ر	ر		U				U		υ	U		U		U		υ	U		U		ر	J		U			ţ	ر			U	
									ND (1)							ND (3)			ND					ND				ND			ST1, ST5	
							1					1																				
												1																				
							ε		2	2		4									, -	4										
~	ŋ		1				4 5		-	9 45 8		18 17 4			9	8 2	2															
* ۲	n		1*				13*	4	4*	16/25 (64)		3/11 (84.6)		3/4 (75)	6/7 (85.7)	13*	2*		1*		*	4		1*			¥ 7	÷			1*	
Macaca nigra	Madrillus	sphinx	Collared	mangabey/	rercocepus	torquatus	Chimpanzee/	Pan troglodytes	Gorilla/ Gorilla gorilla	Western	lowland Gorilla/ Gorilla gorilla	Javan Gibbon/	Hylobates moloch	Orangutan	Chimpanzee	Monkey	Japanese	monkey	Drill/	Ivianariius Ieuconhaeus	siamang/	Hvlobates	syndactylus	Francois' black	leaf monkey/	Presbytis	francoisi	Ue Brazza s monkev/	Cercopithecus	neglectus	Chimpanzee/	
										United	Kingdom			Japan		Japan	Japan		Japan													

France	Brown spider	2*		2		C	MOL	Zhu <i>et al.</i> (2020)
	monkey/							
	Atelus hybridus							
	Roloway	3*			ST1/	'ST3(3) C	MOL	
	monkey/							
	Cercopithecus							
	roloway							
	Mantled	*0*	7	1	ST1/	(ST3(2) C	MOL	
	guereza/							
	Colobus							
	guereza							
	Gorilla/	1*		1		U	MOL	
	Gorilla gorilla							
	Gibbon/ <i>Gibbon</i>	3*		m	-	υ	MOL	
	sp.							
	Saki/	1*		1		U	MOL	
	Pithecia							
	pithecia							
France	Western	4/6 (66.7)	1	1	2	U	MOL	Cian <i>et al.</i> (2017)
	lowland gorilla							
	Orangutan	3/3 (100)			.03	C	MOL	
	Chimpanzee	3/3 (100)		1	1	C	MOL	
	Lar gibbon	2/3 (66.7)		1	1	C	MOL	
	Siamang	4/4 (100)		1	. 1	C	MOL	
	Buff-cheeked	2/2 (100)	2			U	MOL	
	gibbon							
	Southern pig-	3/3 (100)	ŝ	ŝ		U	MOL	
	tailed macaque							
	Mandrill	1/1 (100)	1			U	MOL	
	Owl-faced	1/2 (50.0)	1			U	MOL	
	monkey							
	Roloway	1/1 (100)		1		U	MOL	
	monkey							
	L'Hoest's	1/1 (100)		1		С	MOL	
	monkey							
	De Brazza's	2/2 (100)	1	1		C	MOL	
	monkey							
	Kikuyu black-	2/3 (66.6)	1	1		C	MOL	
	and-white							
	colobus							
	Emperor	1/3 (33.3)		1		C	MOL	
	tamarin							

						Alfellani <i>et al.</i> (2013b)		Zanzani <i>et al.</i> (2016)
MOL	NOL	MOL	MOL	NOL	NOL	NOL	NOM	МО
U	U	U	U	U	U	U	U	ST1/ST2 C (14), ST1/ST3 (3), ST1/ST7 (7), ST2/ST3 (5), ST2/ST5 (1), ST2/ST5 (1), ST2/ST7 (1), ST1/ST2/ ST1/ST2/ ST1/ST2/ ST1/ST2/ ST1/ST3/ ST1/ST2/ ST1/ST3/ ST1/ST2/ ST1/ST3/ ST1/ST3/ ST1/ST2/ ST1/ST3/ ST1/ST2/ ST1/ST2/ ST1/ST3/ ST1/ST2/
		1	1 1	1				7
S	1	1 3	1 1 1	1	1	1	1	4
3/4 (75.0)	1/1 (100)	5/5 (100)	3/3 (100)	2/4 (50.0)	1/1 (100)	1*	1*	85/97 (87.6)
Golden-headed lion tamarin	White-faced saki	Ring-tailed lemur	Red ruffed lemur	Black-and-white ruffed lemur	Blue-eyed black lemur	Japanese macaque/ Macaca fuscata	Barbary macaque/ Macaca Sylvanus	Cynomolgus macaques/ Macaca fascicularis
						Italy		Italy

Colombia	Howler monkey/ Alouatta carava	2/2 (100)		5							U	MOL	Ramírez <i>et al.</i> (2014)
Denmark	Chimpanzee	20*	1	4	∞	7					U	IVC, MOL	Stensvold <i>et al.</i> (2009)
	Orang Utan	4*	1	1	2						U	IVC, MOL	
	Gorilla	6*		4	1	1					U	IVC, MOL	
	Siamang	4*	с				1				U	IVC, MOL	
	Mueller's	7*		1							J	IVC, MOL	
	gibbon												
	Golden cheeked	2*	1		1						C	IVC, MOL	
	gibbon												
	Lar gibbon	2*	1				1				U	IVC, MOL	
	Gibbon	2*			1	1					U	IVC, MOL	
	(unspecified)												
	Woolly monkey	16*		1	4 1		1 0				J	IVC, MOL	
	Diana monkey	1*			1						U	IVC, MOL	
	Barbary	1*			1						U	IVC, MOL	
	macaque												
	Stump-tailed	1*			1						J	IVC, MOL	
	macaque												
	Common	1*			1						C	IVC, MOL	
	marmoset												
	Ring-tailed	6*			2		2	2			U	IVC. MOL	
	lemur												
Bangladesh	Rhesus macaque	20/62 (32.3)	ъ	ŝ	1 2						U	IVC, MOL	Li <i>et al</i> . (2019)
	Vervet monkev	3/7 (42.9)							1		U	IVC. MOL	1
	Langur	3/5 (60.0)	-						5		0	IVC. MOL.	1
	Grey langur	1/2 (50.0)	-								U	IVC, MOL,	1
Mexico	Howler	23/59 (39.0)		5							0	MOL	Villanueva-Garcia <i>et al.</i>
	monkey/ Alouatta palliata												(2017)
lovol	Dhooiic	1001/01/01	r	r							_ ر		Vochilanna at al 10000
Nepal	monkeys/ Macaca mulatta		N	~							J		TUSHIKAWA EL UI. (2003)
Thailand	Macaca fascicularis	197/263 (74 9)	34	48 7	2					MIXED	U	IVC, MOL	Vaisusuk <i>et al.</i> (2018)
	lance and	10								12-1			
Malaysia	Non-Human Primates	5/308 (1.62)								NA	U	CM	Adrus <i>et al.</i> (2019)
Philippines	Monkey	4*	2	-	5						C	MOL	Rivera (2008)
													Alfellani <i>et al.</i> (2013a)

Germany	Howler monkey	2*			2		J	MOL	
	Gray langur	e*	5	1			U	MOL	
	Hamadrvas	1*				ND (1)	U	MOL	
	baboon								
	Drill	19*	17	7		ND (4)		MOI	
	Mandrill	2*	2					MOL	
	Bonobo	4*		4				MOL	
	Barbarv	7*	-	9			U	MOL	
	macaque								
	Mantled	4*	4				U	MOL	
	guereza								
	Orangutan	1^*	Ч				U	MOL	
	Spider monkev	1*				ND (1)	U	MOL	
	Gorilla	1*		1				MOL	
	Gibhon	+ (.	1				NOI	
		+ *	4	-			, c	MOL	
		- - -		T T			, נ	INIUL MOL	
	Vervet monkey	+ +					ں ر	MUL	
	Kutted lemur	÷					5	MUL	
Morocco	Barbary	14^{*}	5	63			U	MOL	Alfellani <i>et al</i> . (2013a)
	macaque/								
	Macaca								
	sylvanus								
	11 H	*	,						
Netherlands	Woolly	4*	7	7			ر	MUL	Alfellani <i>et di.</i> (2013a)
	monkey/								
	Lagothrix								
	lagotricha								
	Red-faced	3* S	£				C	MOL	
	spider monkey/								
	Ateles paniscus								
	Grivet /	2*	2				U	MOL	
	Chlorocebus								
	aethiops								
	Black	°3*	Ч	1 1		ST1/ST3	U	MOL	
	mangabey/					(1)			
	Lophocebus								
	aterrimus								
	Olive baboons/	1*				ST1/ST3	U	MOL	
	Papio anubis					(1)			
	Crab-eating	°3*	Ч	2			U	MOL	
	macaque/								
	Macaca								
	fascicularis								
	Tamarin/	1^*		1			U	MOL	
	Saguinus								
	labiatus								
	Golden lion	1*	Ч				C	MOL	
	tamarind/								
	Leontopithecus								
	rosalia								

Saint Kitts	Green monkey/	32*	-	2 9				U	NOL	Alfellani <i>et al.</i> (2013a)
	sabaeus			V						
Cameroon	Chimpanzee/ Pan troglodytes	25/114 (21.9)					NA	U	NOL	Drakulovski <i>et al.</i> (2014)
Peru	Black-headed night monkey/ <i>Aotus</i> nigriceps	3/23 (13.0)				ε		U	NON	Helenbrook & Whipps (2021)
Poland	Rhesus macaque Chimpanzee Patas monkey Mandrill Javan lutung Guereza Buff-cheeked gibbon	1 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- m	2 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N N		0 000000	MOL	Rudzińska <i>et al.</i> (2021)
	gibbon	-		-				ر		
	Free-living wild an	imals								
Senegal	Chimpanzees/ Pan troglodytes	33/81 (40.7)	27	1			ST2/ST3, (1) ND (4)	3	NOL	Renelies-Hamilton <i>et al.</i> (2019)
Mexico	Black howler monkey/ Alouatta pigra	64/166 (38.5)	m	ъб		2		3	NON	Villanueva-Garcia et al. (2017)
South America	Howler monkey host	58/96 (60.4)				47	ND (11)	M	IVC, MOL	Helenbrook <i>et al.</i> (2015)
Tanzania	Pan troglodytes <i>Chlorocebus</i> <i>aethiops</i>	147/206 (71.4) 94/111 (84.7)	21 5	2 1	7			> >	NON NON	Petrášová <i>et al.</i> (2011)
	pygerytnrus Colobus guereza	41/49 (83.7)	ε	1 2	ß			×	NOL	
CM - Conver	ntional microscopy, l	VC - <i>In vitro</i> cultiv	vation	MOI - MOI	lecular technique.	NA - Not annlicable ND - Not Defined C	– Cantinatod wildlife W – Eroo	-living wildlif	a * - This informati	ion is not provided as a survey

																			1
Country/	Host	No of Positive							Sub	types (ST)					Other/ Mixed	Condition	Technique	References	
region		sainpres (%)	1	7	3	4	9	2	∞	9 10 11 12	13 14	1 15	16	17	anntypes				
Captivated	wild animals																		1
Australia	Guinea fowl/	2/2 (100)						2								U	MOL	Roberts et al. (2013)	1
	Numida meleagris																		
	Ostrich/	6/10 (60.0)			J	.0										C	MOL		
	Struthio camelus																		
	Cassowary/	2/10 (20.0)		2												U	MOL		
	Casuarius																		
	casuarius																		1
China	Ostrich/					1				1					ST20 (1)	U	MOL	Zhao <i>et al.</i> (2017)	
	Struthio camelus	3 /9 (33.3)																	
China	Pigeon/	1/47 (2.1)														υ	MOL	Wang <i>et al.</i> (2018a)	
	Columba livia																		
	Red crowned	6/43 (14.0)					4	2								U	MOL		
	crane/ <i>Grus</i>																		
	japonensis																		1
China	Common pigeon	4/34 (11.8)							4							C	IVC. CM, MOI	Deng <i>et al.</i> (2021)	
	Green neafowl	1/12 (8.3)			, -											C	IVC. CM.		
					1)	MOL		
	Ostrich	6/19 (31.6)	Ч			5										U	IVC. CM,		
																	MOL		1
China	Peafowl	50 (35.0)						6		41						J	MOL	Liu <i>et al.</i> (2021)	
China	Ostrich	6/429 (1.3)				9										С	MOL	Zhang <i>et al.</i> (2021b)	
	Blue-eared	1/429 (0.2)					Ч									U			
	pheasant																		
	Peafowl	3/429 (0.6)					e									U			
	Turkey	1/429 (0.2)						1								U			
	Whooper swan	1/429 (0.2)						1								U			
Japan	Japanese quail/	7 *					ß	m							ST6/ST7 (1)	υ	MOL	Yoshikawa <i>et al.</i> (2004)	1
	Coturnix coturnix																		
	japonica																		
	Pheasant/	6 *													ST6/7(1); ND	C	MOL		
	Phasianus														(5)				
	colchicus																		- I.
Japan	Japanese quail	2 *					-	-								U	MOL	Yoshikawa <i>et al.</i> (2004)	

Table 2. Studies on Blastocystis subtype found in captive and wild birds worldwide

Japan	Chinese bamboo	1/1 (100)					U	MOL	Abe <i>et al</i> . (2002)
	partridge								
	Vulturine	1/1 (100)	1				U	MOL	
	guineatowi								
	Japanese green	1/1 (100)	1				U	MOL	
	pheasant								
	Palawan peacock-	1/1 (100)				ND	U	MOL	
	pheasant								
	Satyr tragopan	1/1 (100)				ND	U	MOL	
	Himalayan monal	1/1 (100)				ND	U	MOL	
	pheasant								
	Great argus	1/1 (100)				ND	U	MOL	
	pheasant								
Japan	Pheasants/	5 *				ND (2)	U	MOL	Yoshikawa <i>et al.</i> (2004)
	Phasianus								
	colchicus								
	Quails/	* 6		4 5			U		
	Coturnix coturnix								
Brazil	Black-cheeked	1/1 (100)			-1		U	MOL	Maloney <i>et al.</i> (2020)
	Lovebird								
	Swan goose	1/1 (100)		1			U	MOL	
	Garganey	1/1 (100)				ST7, ST10, ST27. ST28	U	MOL	
	Indian peafowl	2/3 (66.6)				ST27/ST28 (2)	U	MOL	
	Wild Duck	1/1 (100)		1			U	MOL	
	Helmeted	2/2 (100)		1 1			U	MOL	
	Guineafowl								
	Momelanotus	1/1 (100)				ST7, ST14	U	MOL	
	Quail	1/1 (100)				ST6, ST7	U	MOL	
	Mallard	1/1 (100)		1			U	MOL	
	Muscovy ducks	1/1 (100)				ST7/14	U	MOL	
	Pheasant	4/10 (40.0)		2 2			U	MOL	
	Ostrich	2/2 (100)	1			ST5/10/24 (1)	U	MOL	
	Pheasant	4/10 (40.0)		2 2			U	MOL	
Brazil	Lesser Seed Finch/	2/35 (5.7)				NA	U	IVC, CM	Marietto-Gonçalves et
	Oryzoborus								<i>al.</i> (2008)
	angolensis								
	Common Peafowl/	1/1 (100)				NA	C	IVC, CM	
	Pavo cristatus								

France	Egyptian fruit bat	1/1 *	-			ST3 (1)	J	MOL	Cian <i>et al</i> . (2017)
	Common peafow	1/2 *				ND	U	MOL	
	American flamingo	1/3 *	1				υ	MOL	
	Ostrich	2/2 *		2			υ	MOL	
	Greater rhea	3/3 *		2 1			С	MOL	
Colombia	Passer domesticus	17*		17			U	CM, MOL	Ramírez <i>et al</i> . (2014)
	Thraupis	6*		9			U	CM, MOL	
	episcopus								
	Oryzoborus	*8		8			U	CM, MOL	
	maximiliani								
	Sicalis flaveola	5*		5	-		υ	CM, MOL	
	Petrochelidon	11^{*}		11			υ	CM, MOL	
	pyrrhonota								
Spain	Ostrich/	58*				NA	υ	IVC, CM	Ponce Gordo <i>et al</i> .
	Struthio camelus								(2002)
Spain	Swan goose	3/18 (16.6)				NA	U	IVC, CM	Pérez Cordón <i>et al</i> .
	Galliformes	12/36 (33.3)				NA	υ	IVC, CM	(2008)
Malaysia	Ostrich/	37/37 (100)		37			U	MOL	Hemalatha <i>et al</i> .
	Struthio camelus								(2014)
Free living v	vild animals								
China	Blood pheasant	0/1					N	MOL	Chen <i>et al.</i> (2021)
	Chinese Monal/	0/2					N	MOL	
	Lophophorus								
	lhuysii						-		
Iran	Crows/	64/144 (42.9)			46 13	ND (5)	N	IVC, MOL	Asghari <i>et al.</i> (2019)
	Corvus cornix								
	Pigeon/	67/156 (44.4)			67		N	IVC, MOL	
	Columba livia								
Malaysia	Large-billed crow	4 (33.96)				NA	N	CM	Yong <i>et al.</i> (2008)

Artiodactyl

Deer, boars, camels, alpacas, and other artiodactyla have a prevalence rate ranging from 6.7% to 100% (Table 3). The United Kingdom had the highest prevalence rates concerning the most positively examined samples, even though the samples used in the study were relatively small. The highest number of artiodactyls examined was in Yaks with 278 positive samples out of 1027 conducted in China (Ren *et al.*, 2019). Overall, 15 subtypes were found in artiodactyl, namely, ST1, ST2, ST4, ST5, ST7, ST8, ST10-ST15, ST18, ST21, and ST22. *Blastocystis* ST10 was the most discovered *Blastocystis* subtype in cervids, bovids, ovids and camelids, followed by ST5 and ST14 (Zhao *et al.*, 2017). The unique and rare subtypes found in these groups are ST8, ST15, ST18, ST21, and ST22 in red deer, camel, alpaca, guanaco, and waterbuck.

The significance of pathogenicity in disease is still unknown. ST18, ST21, and ST22 were discovered to be the novel subtypes of Blastocystis infection from waterbuck, alpaca and guanaco. Several studies have been conducted on Blastocystis sp. outbreaks in deer with various subtype distributions. In the United Kingdom, red deer were reported to be infected with ST4 and ST10, and muntjac deer have been found infected with ST14 (Cian et al., 2017; Betts et al., 2018). In China, ST10 has been discovered in fallow deer, sika deer, and white-lipped deer. A rare subtype which is ST13 has been discovered in Java mousedeer in France and mouse deer in the United Kingdom. The distribution of STs in alpacas in China and France revealed that all the isolates were ST10 and ST14 (Abe et al., 2002; Zhao et al., 2017; Li et al., 2020a; Ma et al., 2020b). Overall, these findings suggested that alpaca and deer may be Blastocystis reservoirs. Meanwhile, domestic yaks' infection status varied significantly depending on their geographical origin in Qinghai Province, China as many factors including wildlife age, varying quantities of samples from various seasons, environmental situations, and altitude variability may have contributed to the disparity in prevalence based on Ren et al. (2019). Domestic yaks in Qinghai Province were also found to have the above subtypes indicating a high prevalence. Furthermore, subtype ST12 was discovered in kangaroos and giraffes in Western Australian zoos for the first time by Roberts et al. (2013).

Carnivora

Most of the wild carnivore studies were conducted on captive animals rather than wild animals. The prevalence rate ranged from 0.06% to 100% (Table 4). In studies with a limited number of samples, 100% prevalence rate was observed. Compared to other groups of animals, most studies used a small number of samples. ST1, ST2, ST3, ST4, ST5, ST7, ST9, and ST17 are subtypes associated with carnivores, with ST1 and ST3 being the most common subtypes discovered. Several studies on Blastocystis in carnivores reported with negative infection in several hosts such as European badger, meerkat, red fox, serval, stoat and many more indicating that they might not be a natural host for zoonotic transmission (Abe et al., 2002; Lim et al., 2008; Alfellani et al., 2013b; Parkar et al., 2010; Zhao et al., 2017). Others reported that wildlife infections continue to vary with 2.83% in China (Table 4) (Deng et al., 2019), 7.5% in the US (Ruaux & Stang, 2014), 2.94% in England (Betts et al., 2018), 23.8% in India (Wang et al., 2013) and 69.35% in Australia (Duda

et al., 1998). Only with light-scoping technologies high prevalence rates were recorded (Duda *et al.*, 1998) and have been questioned since then. A study by Wang *et al.* (2013) on Indian stray dogs found that various geographical areas have a bearing on diversity. This was mainly infected by temporary and opportunistic ST infection. Others claimed that 99% to 100% of *Blastocystis* infection carnivores are similar to humans by ST (Cian *et al.*, 2017).

Rodentia

In comparison to captive rodents, there are fewer studies on *Blastocystis* being conducted on wild rodents (Table 5). Several subtypes were found in rodents namely, ST1-5, ST7, ST8, ST10, ST13, and ST17 with ST4 being the most prevalent subtype (Alfellani *et al.*, 2013b; Yoshikawa *et al.*, 2016; Betts *et al.*, 2018; Farah Haziqah *et al.*, 2018; Katsumata *et al.*, 2018).

Marsupial

Marsupial studies were scarce with only a few studies carried out on this group of animals worldwide (Table 7). However, *Blastocystis* in marsupial were frequently being reported in Australia (Parkar *et al.*, 2007, 2010; Roberts *et al.*, 2013). The prevalence rate varies from 0.5% to 100%. *Blastocystis* ST11 was highly reported in marsupial in China (Zhao *et al.*, 2017), whereas ST1, ST4, ST8 and ST10 are the common subtypes found in this group worldwide (Parkar *et al.*, 2010; Roberts *et al.*, 2013; Zhao *et al.*, 2017; Cian *et al.*, 2017; Li *et al.*, 2019).

Proboscidea

To date, studies on proboscidea were lacking with only six studies recorded worldwide. *Blastocystis* sp. was found in elephants from Australia, Netherlands, Belgium, France, and Bangladesh with the prevalence rate varying from 33.3% to 100% (Table 6). It was reported that ST11 was the most common subtype discovered. Nonetheless, ST1 and ST3 were also reported in this animal group.

Perissodactyla

Perissodactyla is among the animal group that received less research attention on genotypic characterisation (Table 8). The prevalence rate ranges from 16.7% to 40%. The most predominant subtype was ST3. Other subtypes identified were ST2, ST3, ST5 and ST10 (Figure 8). The most common perissodactyla being studied was the pony. Recently, Zhang *et al.* (2021) reported the occurrence of *Blastocystis* in a captive wild animal. Pony was found to be the new host for ST2.

Reptiles

There have only been a few conventional studies on *Blastocystis* in reptiles (Table 9) in which no molecular investigations have been conducted in Australia, United Kingdom or China. Most of the studies were conducted in Singapore and the United Arab Emirates. In Malaysia, the only study on genotypic characteristics of *Blastocystis* in reptiles was reported by Mohd Zain *et al.* (2017) who demonstrated *Blastocystis* Clade VIII isolated from a water monitor lizard. The overall number of reptiles examined throughout all the studies was generally smaller. Thus, further molecular studies on reptiles are required to understand better the distribution of subtypes and the evolutionary relationships in Reptilia.

.												
Country/	Host	No. of Positive			Sub	otypes (ST)			Other/ Mixed	Condition	Technique	References
kegion		sampies (%)	1 2 3 4	56	7 8	9 10 11	1 12 13 14 15	16 17	ouorypes			
Captivated w	ild animals											
Australia	Deer/	1/50 (2.0)	1							C	MOL	Roberts <i>et al.</i> (2013)
	Cervus elaphus											
	Giraffe/ Giraffa	1/6 (1.7)					1			υ	MOL	
	camelopardalis											
Australia	Giraffe/ Giraffa	5/6 (83.3)					5			U	MOL	Parkar <i>et al.</i> (2010)
	camelopardalis											
China	Reindeer /	7/104 (6.7)				£	4			U	MOL	Wang <i>et al.</i> (2018b)
	Rangifer tarandus											
	Sika deer /	12/82 (14.6)				10	2			U	MOL	
	Cervus nippon											
China	Takin/					25	2			υ	MOL	Zhao <i>et al.</i> (2017)
	Budorcas taxicolor	28/49 (57.1)										
	Alpaca/	12/14 (85.7)				6	2		ST18(1)	U	MOL	
	Lama pacos											
	Guanaco/	14/20 (70.0)				13			ST22 (1)	U	MOL	
	Lama guanicoe											
	Giraffe/	2/10 (20.0)				2				U	MOL	
	Giraffa											
	camelopardalis											
	Bushbuck/	8/13 (61.5)				1	7			C	MOL	
	Tragelaphus											
	scriptus											
	Eland/ <i>Taurotragus</i>	6/9 (66.7)				Ω	ε			U	MOL	
	oryx											
	Camel/	5 /10 (50.0)	1			4				U	MOL	
	Camelus sp.											
	Sika deer/	3/8 (37.5)				ŝ				U	MOL	
	Cervus nippon											
	Wapiti/	1/3 (33.3)				1				U	MOL	
	Cervus elaphus											
	Wild yak/	3/6 (50.0)				2	1			U	MOL	
	Bos grunniens											
	Lechwe water	3/3 (10)					2			C	MOL	
	buck/											
	Kobus leche											
	Oryx/	1/2 (50.0)				1				U	MOL	
	Oryx gazella											

	Fallow Deer/ <i>Dama</i>	1/2 (50.0)			1				U	MOL	
	dama										
	Waterbuck/	½ (50.0)						ST21(1)	U	MOL	
	kobus ellipsiprymnus										
	White-lipped Deer/	1/1 (100)			1				U	MOL	
	Cervus albirostris				1		1				
China	Yaks/ <i>Bos</i> arunniens	278/1027 (27.1	(1/0	20 20	0/		U	MOL	Ren <i>et al.</i> (2019)
China	Blesbok/	1/2 (50.0)		1					υ	MOL	Li <i>et al.</i> (2020a)
	Damaliscus dorcas										
	South African oryx/	1/11 (9.1)		1					U	MOL	
	Oryx gazella										
	Red deer/ Cervus	5/2 (40.0)			2				U	MOL	
	elaphus										
	Alpaca / <i>Vicugna</i>	27/4 (14.8)			1		ŝ		U	MOL	
	pacos										
China	Alpacas/	87/366 (23.8)		1	39		m		υ	MOL	Ma <i>et al</i> . (2020b)
	Vicugna pacos			2			9				
China	Giraffe	3/429 (0.6)		1	2				υ		Zhang <i>et al.</i> (2021)
	Sika deer	18/429 (0.4)		9	12				U	MOL	
	White-lipped deer	1/429 (0.2)			1				U	MOL	
	Yak	1/429 (0.2)			1				U	MOL	
	Bactrian camel	2/429 (0.4)			1		1		U	MOL	
China	black bears /Ursus	45/312	4						υ	MOL	Ni <i>et al.</i> (2021)
	thibetanus	(14.4)	ß								
	sika deer/ <i>Cervus</i>	6/760						ST1,	U	MOL	
	nippon	(0.8)						ST14			
United	Yak				2				U	IVC, MOL	Betts <i>et al.</i> (2018)
Kingdom	European Bison	3/3 (100)			£				C	IVC, MOL	
	Eurasian Elk	1/2 (50.0)						ST4,10,14	U	IVC, MOL	
	Pygmy Goat	2/2 (100)					1	ST1,10	U	IVC, MOL	
	Red Deer	1/1 (100)						ST4,10(1)	U	IVC, MOL	
	Soay Sheep	1/1 (100)					1		U	IVC, MOL	
	Wild Boar	1/2 (50.0)		1					U	IVC, MOL	
United	Wild boar /	2/4 (50.0)		2					υ	MOL	Betts <i>et al.</i> (2020)
Kingdom	Sus scrofa										
	Red deer/	1/3 (33.3)		1	-				U	MOL	
	Cervus elaphus										
	Red river hog/	3/6 (50.0)		£					U	MOL	
	Potamochoerus										
	porcus										

						lani <i>et al</i> .	3a)			svold <i>et al.</i> ,	(6)	et al. (2017)											<i>al.</i> , (2019)			llani <i>et al.,</i> 3b)	lani <i>et al</i> .	3b)	lani <i>et al</i> .	3b)	nça-Barbosa <i>et</i> 2019)	eira-Arbex <i>et al.</i>	10.		
Γ	JC	JC				JL Alfel	JL (201	٥٢	Ē	, MOL Sten	(200	DL Cian	٥٢	Ы	٥٢	٦L	Ы	ЪГ	٥٢	٦L	٦L		C, MOL, Li et	, MOL	, MUL.	DL Alfel (201	DL Alfel	DL (201	DL Alfel	(201	c, MOL Vale al. (2	olive DIve	202)	Ъ	
MG	WG	W	W			W	M	MG		N N		M	M	M	M	M	M	M	M	M	M		IVO		2VI	M	M	M	MG		IVO	W		MG	
U	U	U	C			U	U	U	ر			U	J	J	U	ပ	U	U	J	U	U		U	U i	J	U	U	U	U		U	υ		U	
						ND(1)												ST10,14(1)									MIXED (7)	MIXED 1)				NA			
1			-						2				1	4	1				1					с і ,	1		3 1		1						
	7	m	-			1				-		1		1		2	1			Э	4		1			2	9								
																															сı				
									.	4																	20				1 14			1	
							1														1						S								
																											5				ŝ				
1/1 (100)	1/1 (100)	3/9 (33.3)	1/6 (17.0)			2/3 (66.7)	1/4 (25.0)	2/2 (100)	1/2/50.01	1*		1/6 (16.7)	1/1 (100)	5/6 (83.3)	1/1 (100)	2/2 (100)	1/1 (100)	1/3 (33.3)	1/1 (100)	3/4 (75.0)	5/5 (100)		1/7 (14.3)	1/30 (3.3)	1/4 (25.0)	2/2 (100)	47/196 (24.0)	1/9~(11.1)	1/5 (20.0)		30/39 (76.9)	1/1 (100)		1/1 (100)	•
Muntjac deer/	Nuntiacus reevesi Reindeer/ Ranaifer tarandus	European Bison/ Bison bonasus	Bongo/	Tragelaphus	eurycerus	Anoa	Giraffe	Mouse deer	Roadaar	Roe deer		Alpaca	Java mousedeer	Giraffe	Common eland	Greater kudu	Bongo	American bison	Blindled wildebeest	Beisa oryx	Scimitar-horned	oryx	Waterbuck	Spotted deer	Gayal	Fallow deer	Camel	Gazelle	Mouflon		boar	Marsh Deer/	dichotomus	Gray Brocket/	Mazama
						United	Kingdom			Denmark		France											Bangladesh			Mauritius	Libya		Czech	Republic	Brazil	Brazil			

	Collared Peccary/ Pecari taiacu	1/1 (100)						AN	U	NOL	
Malaysia	Deer	30/100 (30.0)						NA	U	IVC, MOL	Hemalatha <i>et al.</i> (2014)
Nepal	Buffalo/ Bubalus bubalis	4/19 (21.1)					1	ND(3)	U	MOL	Lee <i>et al</i> . (2012)
United States of America	White-tailed deer	71*							J		
Netherlands	Giraffe/ Giraffa camelopardalis	12/15 (80.0)					10	NA(2)	U	NOL	Parkar <i>et al</i> . (2010)
Belgium	Giraffe/ Giraffa camelopardalis	5/5 (100)				7	4	NA(1)	U	MOL	Parkar <i>et al.</i> (2010)
Poland	Wild boar Collared neccary	* * © ~			∞σ				υ ι	MOL	Rudzińska <i>et al.</i> (2021)
Free living wil	d animals	2			,)		11
China	Sambar Deer/ <i>Rusa unicolor</i> Sika deer/ <i>Cervus</i>	8/39 (20.5) 5/14 (35.7)	4	1			3		33	MOL	Chen <i>et al.</i> (2021)
	nippon Long-tailed goral/ Naemorhedus griseus	5/17 (29.4)	Ч		7		0		8		
	Crested deer/ Elaphodus cephalophus	4/8 (50.0)					3 1		8		
	Chinese antelope/ Capricornis milneedwardsii	1/3 (33.3)					1		8		
	Dwarf musk deer/ Moschus berezovskii	0/19 (0)							×		
	Takin/ <i>Budorcas</i> taxicolor	0/25 (0)					2 1		8		
	Blue sheep/ Pseudois nayaur	3/42 (0.7)							×		
China	Tibetan antelope/ Pantholops hodgsonii	30/627 (0.05)				4	2 2 4		×	MOL	Geng <i>et al.</i> (2021)
Iran	wild boars/ Sus scrofa	3/12 (25.0)						NA	8	G	Solaymani- Mohammadi <i>et al.</i> (2004)

Iran	Wild boar/	11/25 (44.0)					N/A	N	MOL	Yaghoobi <i>et al.</i> ,
	Sus scrofa									(2016)
Iran	Wild boars/	11/25 (44.0)					NA	N	IVC, MOL	Yaghoobi <i>et al.</i>
	Sus scrofa									(2016)
Malaysia	Mouse deer	1/4 (25.0)					ND	N	IVC, MOL	Mohd Zain <i>et al</i> .
										(2017)
South Korea	Wild boar/	45/433 (10.4)			4			N	MOL	Lee <i>et al.</i> (2020)
	Sus scrofa				5					
Poland	Wild boar/	1/113 (0.01)			Ч			N	MOL	Kaczmarek <i>et al.</i>
	Sus scrofa									(2021)
	Red deer/	2/113 (0.02)	2						MOL	
	Cervus elaphus									
	elaphus									
	European bison/	5/113 (0.04)	-	1	2	1		N	MOL	
	chemina linera									

CM - Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not applicable, ND - Not Defined, C - Captivated wildlife, W - Free-living wildlife, * - This information is not provided as a survey.

Country	Host	No of Positive Samulas						v)	ubtyp	es (ST)							Other/ — Mived	Condition	Technique	References	
		(%)	1 2	æ	4	5	5 7	8	6	10	11	12	13	14	15 1	6 17	Subtype	S			
Captivatd v	vild animals																				
Australia	Snow Leopard/ Panthera uncia	1/6 (1.7)			-													υ	МОГ	Roberts <i>et al.</i> (2013)	
China	Raccoon dog/ Nyctereutes procyonoides Arctic fox /	3/40 (7.5) 4/213 (1.9)	5	m	-		1											υυ	Nol Mol	Wang <i>et al.</i> (2018b)	
	Alopex <i>lagopus</i>																				
China	Sand badger/Arct onyx collaris	1/3 (33.3)																U	MOL		
	Leopard cat/Prionail urus bengalensis	1/10 (10.0)												-				U	MOL		
China	Northern raccoon leopard	2/429 (0.05) 1/429 (0.02)				н -												U	MOL	Zhang <i>et al.</i> (2021)	
United Kingdom	Pine Marten	1/1 (100)	ц.															U	IVC, MOL	Betts <i>et al.</i> (2018)	
United Kingdom	Lynx/ Lynx lynx	2/40 (5.0)	7											1				υ	IVC, MOL	Betts <i>et al.</i> (2020)	
	Pine Marten/ <i>Martes</i>																	U			
	martes Scottish Wild Cat/ Felis silvestris	1/2 (50.0) 1/13 (8.0)			T												ST4,14	U			

Table 4. Studied on Blastocystis in captive and wild carnivora worldwide

Cian <i>et al.</i> (2017)	Oliveira-Arbex <i>et al.</i> (2020)	Kaczmarek <i>et al.</i> (2021)
TOM TOM TOM	Nor Mol	NOL
υυυ		×
	NA NA ST1 NA	
		1
1 1		
1		06)
1/1 (100) 1/4 (25.0 1/3 (33.3 1/1 (100)	1/2 (50.0 1/1 (100) 1/1 (100) 1/2 (50.0 1/4 (25.0] 1/3 (33.3]	7/113 (0.1
Cheetah Grey wolf Polar bear California sea lion	Jaguarundi/ Herpailurus yaguarondi Ocelot/ Leopardus northern Tiger Cat/ Leopardus tigrinus Jaguar/ Panthera South American Coati/ Nasua Raccoon/ Procyon Cancrivorus	Grey wolf/
France	Brazil Free living w	Poland

CM - Conventional microscopy, IVC - *In vitro* cultivation, MOL - Molecular technique, NA - Not applicable, ND - Not Defined, C – Captivated wildlife, W – Free-living wildlife, * - This information is not provided as a survey.

Country	Host	No of Positive				Subtype	(ST)				Other/ Mixed	Condition	Technique	References	
		Samples (%)	1 2	3 4 5	678	9 10	11 12	13	4 15	16 1	/ Subtypes				
Captivated V	Vild animals														
China	Patagonian mara/ Dolichotis patagonum	3/15 (20.0)		m								U	MOL	Li <i>et al.</i> (2020b)	
China	Flying squirrels	69/207 (33.3)	4 2	7 7				27				υ	MOL	Xiao <i>et al</i> . (2019)	
China	Chinchilla	4/6 (66.7)								4		υ	IVC, CM, MOL	Deng <i>et al.</i> (2021)	
	Red giant flying squirrel	1/1 (100)		1								U	IVC, CM, MOL		
	Black great squirrel	1/1 (100)		1								U	IVC, CM, MOL		
United	Red Squirrel	1*		1								υ	IVC, MOL	Betts <i>et al.</i> (2018)	
Kingdom	Water Vole	10*		8							ST1,4,10(2)	С	IVC, MOL		
United	Bank vole	1/32 (3.13)		1								U	MOL	Alfellani <i>et al</i> .	
Kingdom	Wood mouse	1/13 (7.69)		1								U	MOL	(2013a)	
Belgium	Chinchilla	2/5 (40.0)		2								U	MOL	Alfellani <i>et al.</i> (2013a)	
Poland	Yellow necked mouse	1/1 (100)		TI I								υ	MOL	Alfellani <i>et al.</i> (2013a)	
Libya	Gundi	1/4 (25.0)								1		υ	MOL	Alfellani <i>et al.</i> (2013a)	
Japan	Rat	1/1 (100)		-								υ	MOL	Yoshikawa <i>et al.</i> (2003a)	
Brazil	Capybara/ Hydrochoerus hydrochaeris	2/23 (8.7)	-		-							U	MOL	Oliveira-Arbex <i>et</i> al. (2020)	
Brazil	Rattus rattus	1/1 (100)		1								υ	IVC, MOL	Valença-Barbosa <i>et</i>	
	Nectomys squamipes	3/3 (100)			7						ND (2)	U	IVC, MOL	<i>al.</i> (2019)	
	Akodon cursor Akodon montensis	1/2 (50.0) 2/2 (100)									ND (1) ND (1)	υυ	IVC, MOL IVC, MOL		

Table 5. Studies on Blastocystis in captive and wild rodentia worldwide

una	Eurasian Red Squirrel	7/72 (9.7)		٢				U	MOL	Chai <i>et al</i> . (2020
	Eastern Chipmunk	8/171 (4.7)		∞				U	MOL	
	Chinchilla	3/72 (4.2)		2		1		U	MOL	
	Guinea pig	12/90 (13.3)		7 7				J	MOL	
	Chinese Striped	12/98 (12.2)		-				0	MOL	
	Hamster			2						
China	White kangaroo	9/429 (2.1)		5	4			c	MOL	Zhang <i>et al.</i> (202
France	Norway rat/	1/2 (50.0)		1				J	MOL	Cian <i>et al</i> . (2017)
	Rattus norvegicus									
	Capybara/	3/5 (60.0)	1	1		NI	D (1)	J	MOL	
	Hydrochoerys hydrochaeris									
Maxico	Kangaroo rat/	4/8 (50.0)		1		2 NI	D (1)	υ	MOL	Martinez-
	Heteromyidae sp.									Hernandez <i>et al.</i> (2020)
Unites	Brazillian	1*				Σ	IIXED	υ	MOL	Goe <i>et al.</i> (2016)
states of	porcupine/					S	T4/ND (1)			
America	Coendou									
	prehensilis									
Colombia	Rats/	3/10 (33.3)	(7)					U	IVC, MOL	Ramírez <i>et al.</i>
	Rattus rattus									(2014)
United Arab Emirates	Indian palm souirrel	2/4 (50.0)		2				U	MOL, MOL	AbuOdeh <i>et al.</i> (2019)
	Faced squirrel	1/2 (50.0)				1		U	MOL, MOL	
Free living wi	ild animals	•								
China	Brown rat /	4/108 (3.7)		4				×	MOL	Wang <i>et al</i> .
	Mus musculus									(2018b)
China	Porcupine/ Hystrix hodosoni	1/7 (14.3)	1					×	MOL	Chen <i>et al.</i> (2021)
ndonesia	Polynesian rats/	11/67 (16 4)		-				M	MOI	Katsumata <i>et d</i>
	Rattus exulans							:		(2018)

as a	
as	
σ	
ē	
<u>i</u>	
2	
ž	
4	
б	
is.	
L	
<u>0</u>	
at	
Ĕ	
F	
ę	
2	
S	
Ξ	
\vdash	
*.	
e.	
Ξ	
р	
ī	
60	
ũ	
.2	
÷	
ê	
'n.	
÷	
1	
≥	
-	
fe	
1	
÷	
≥	
0	
ē	
at	
.≥	
pt	
, m	
Ģ	
0	
ά	
ē	
, E	
ef	
Δ	
Ħ	
ž	
1	
z	
aì.	
-	
ab	
<u>.</u>	
р	
đ	
σ,	
đ	
Not	
- Not	
A - Not	
NA - Not	
e, NA - Not	
lue, NA - Not	
ique, NA - Not	
nnique, NA - Not	
chnique, NA - Not	
technique, NA - Not	
r technique, NA - Not	
lar technique, NA - Not	
sular technique, NA - Not	
ecular technique, NA - Not	
olecular technique, NA - Not	
Molecular technique, NA - Not	
- Molecular technique, NA - Not	
L - Molecular technique, NA - Not	
10L - Molecular technique, NA - Not	
MOL - Molecular technique, NA - Not	
n, MOL - Molecular technique, NA - Not	
on, MOL - Molecular technique, NA - Not	
tion, MOL - Molecular technique, NA - Not	
vation, MOL - Molecular technique, NA - Not	
tivation, MOL - Molecular technique, NA - Not	
ultivation, MOL - Molecular technique, NA - Not	
o cultivation, MOL - Molecular technique, NA - Not	
ro cultivation, MOL - Molecular technique, NA - Not	
vitro cultivation, MOL - Molecular technique, NA - Not	
<i>vitro</i> cultivation, MOL - Molecular technique, NA - Not	
In vitro cultivation, MOL - Molecular technique, NA - Not	
`- <i>In vitro</i> cultivation, MOL - Molecular technique, NA - Not	
/C - In vitro cultivation, MOL - Molecular technique, NA - Not	
IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
y, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
py, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
copy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
oscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
roscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
iicroscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
al microscopy, IVC - <i>In vitro</i> cultivation, MOL - Molecular technique, NA - Not	
nal microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
ional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
ntional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
entional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
ventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
onventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
· Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	
1 - Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not	

Iroboscidea worldwide
٩
p
ī
ō
Ē
10
captiv∈
⊒.
vstis
Blastoc
L
5
5. Studie:
e.
Table

Country	Host	No Positive							Subtyp	e (ST)						Other/	J	ndition	Technique	References
		sampies (%)	H	2 3	4	9	7 8	6	10	11	12	[3	14	15 1	 9	Subtyk	es			
Captivated Wi	ld animals																			
Australia	Asian elephant	11/20 (55.0)								11							U		MOL	Roberts <i>et al</i> . (2013)
Australia	Asian elephant	9/9 (100)								7						ND (2)	U		MOL	Parkar <i>et al.</i> (2010)
Netherlands	Asian elephant	6/14 (42.9)								9							U		MOL	Parkar <i>et al.</i> (2010)
Belgium	Asian elephant	1/2 (50.0)								-							υ		MOL	Parkar <i>et al.</i> (2010)
France	Asian elephant	3/4 (75.0)	ε	2													U		MOL	Cian <i>et al.</i> (2017)
Bangladesh	Elephant	1/3 (33.3)								1							U		IVC, MOL	Li <i>et al.</i> (2019)

CM - Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not applicable, ND - Not Defined, C - Captivated wildlife, W - Free-living wildlife, * - This information is not provided as a survey.

Country	Host	No of					0	htvnac ((T2)					Othe	2	ondition	Technique	References
		Positive					กี	nnrypes (110					Mixe	a			
		Samples (%)	1 2	ŝ	4 5	67	6 8	10 1	1 12	13	14	15	16 17	Subt	/pes			
Captivated /	Wild animals																	
Australia	Eastern Wallaroo/	3/3 (100)			e.												MOL	Roberts et al. (2013)
	Macropus robustus																	
	Western Grey	1/2 (50.0)								Η						, ,	MOL	
	Kangaroo/																	
	Macropus fuliainosus																	
	Eastern Grev	3/4 (75.0)			~										U	, .	MOL	
	Kangaroo/														,			
	Macropus giganteus																	
	Red Kangaroo/	3/4 (75.0)			6										0	0	MOL	
Autoria	Nucropus rujus	1001/0/0								ſ							1014	(010C) 12 to solved
Australia	Quokka Southern hairv	2/2 (100) 1/1 (100)	.							7						, <i>.</i>	MOL	Parkar et al. (2010)
	bouttient naily nosed wombat		-												,		INICL	
	Western grey	1/2 (50.0)							1						J	, -	MOL	
	kangaroo																	
Australia	Chuditch/	4/29 (13.8)												ND(4			IVC, MOL	Parkar <i>et al.</i> (2007)
	Dasyurus geoffroii																	
China	Marsupialia							∞							J		MOL	Zhao <i>et al.</i> (2017)
	Gray kangaroo/	8 /11 (72.7)																
	Macropus fuliainosus																	
China	White kangaroo	2/479 (N 5)	6														IOM	7hang et al (2021)
Erono	Dod-pockod	1/1 /50 0/	l														MOI	Cine of al (2017)
	wallaby/ <i>Macropus</i>	(n.uc) 1 /1														,	INICL	
	rufogriseus																	
Brazil	Common opossum/	1/4 (25.0)												() ND ())		MOL	Oliveira-Arbex et al. (2020)
	Diaeipnis marsupialis																	
Brazil	Metachirus	1/1 (100)	-														MOL	
	Didelphis aurita	21/25 (84.0)	4				1	1						NA (1	6) C		MOL	Valença-Barbosa <i>et al.</i> (2019)
NK	Macropus	2*						2						NA (1			IVC, MOL	Betts et al. (2018)
	rufogriseus /																	
	Diprotodontia Wallaby																	
Colombia	Opossums/	25/40 (62.5)						2									IVC, MOL	Ramírez <i>et al.</i> (2014)
	Didelphis marsupialis							ы										
Poland	Red kangaroo	1*			1												MOL	Rudzińska <i>et al.</i> (2021)
	ŀ																	

CM - Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not applicable, ND - Not Defined, C – Captivated wildlife, W – Free-living wildlife, * - This information is not provided as a survey.

Sanggari et al. (2022), Tropical Biomedicine 39(3): 338-372

Table 7. Studies on Blastocystis in captive and wild marsupial worldwide

country	Host	No of Positive		Subtype	s (ST)						Other/ Mixed	Condition	Technique	References
		Samples (%)	1 2 3 4 5 6 7	8 9 10	11	12	13	14 1	5 16	17	Subtypes			
Captivated	Wild animals													
China	Akhal-teke horse/			-								υ	MOL	Zhao <i>et al</i> .
	Equus caballus	1/4 (25.0)												(2017)
	Pony/	1/6 (16.7)		1								U	MOL	
	Pedicularis humilis													
	Mongolia Wild Ass/	2/5 (40.0)		1								U	MOL	
	Equus hemionus nallas													
China	Pony	2/249 (0.8)	2									υ	MOL	Zhang <i>et al.</i> (2021)
France	Common zebra	2/4 (50.0)	1								ND (1)	U	MOL	Cian <i>et al</i> .
	Poitou donkey	2/2 (100)	1 1									C	MOL	(2017)
	South American	3/3 (100)	2 1									U	MOL	
	tapir													
United	Black rhinoceros	1/1 (100)	1									υ	MOL	Alfellani <i>et al</i> .
Kingdom														(2013b)

Table 8. Studies on Blastocystis in captive and wild perissodactyla worldwide

CM - Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not applicable, ND - Not Defined, C - Captivated wildlife, W - Free-living wildlife, * - This information is not provided as a survey.

Country	Host	No of Positive	Subtypes (ST)	Other/ Mixed	Condition	Technique	References
		Samples (%)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	Subtypes			
Captivated v	vild animals						
France	Green	1/1 (100)		NA	υ	NOL	Cian <i>et al.</i> (2017)
	iguana						
	Boa constrictor	1/1 (100)		AN	U	MOL	
Iran	Cobra	1/1 (100)		NA	U	IVC, CM	Mirzapour <i>et al</i> .
	<mark>snake</mark>						(2018)
	Phytons	1/1 (100)		NA	U	IVC, CM	
	Albino						
Singapore	Galapagos	1*		NA	J	IVC, CM	Teow <i>et al.</i> (1992)
	tortoise						
	Starred	1*		NA	U	IVC, CM	
	tortoise						
	Red-footed	1*		NA	C	IVC, CM	
	tortoise						
	Mangrove	1*		NA	U	IVC, CM	
	snake						
	Reticulated	1*		NA	U	IVC, CM	
	python						
	Copperhed	1^*		NA	U	IVC, CM	
	snake						
	Estuarine	1*		NA	U	IVC, CM	
	Rhino	*		NA		IVC. CM	
	iguana						
United	African	19*		NA	С	IVC, CM	AbuOdeh <i>et al.</i>
Arab	spurred						(2019)
Emirates	tortoise						
	Centrochel-						
	ys						
	Greek	2*		NA	U	IVC, CM	
	tortoise						
	Mata mata	1^*		NA	U	IVC, CM	
	turtle						

Table 9. Studies on Blastocystis in captive and wild reptiles around the world

Poland	leonard	-*	NA			Rudzińska <i>et al</i> .
	tortoise					(2021)
	Spur-	1^*	NA	U		
	thighed					
	tortoise					
	Giant Asian	1^*	NA	U		
	pond turtle					
	Radiated	1*	NA	U		
	tortoise					
	African	1^*	NA	C		
	spurred					
	tortoise					
Free living	wild animals					
Malaysia	Water	1/6 (1.7)	ND (1)	×	IVC, MOL	Mohd Zain <i>et al</i> .
	monitor					(2017)
	lizards					

CM - Conventional microscopy, IVC - In vitro cultivation, MOL - Molecular technique, NA - Not applicable, ND - Not Defined, C – Captivated wildlife, W – Free-living wildlife, * - This information is not provided as a survey.

CONCLUSIONS

Most *Blastocystis* studies were conducted on wildlife and captive animals in Australia, China, and the United Kingdom. Among the other countries involved were France, Colombia, Brazil, Bangladesh, Netherlands, Belgium, the United Arab Emirates, the United States, Mexico, Indonesia, Japan, Libya, Belgium, Poland, Iran, South Korea, the Czech Republic, Mauritius, Denmark, Malaysia, Spain, Saint Kitts and Nevis, Cameroon, Morocco, Philippines, Germany, Thailand, Tanzania, Nepal, Italy, Senegal, and France. Overall, different geographic regions worldwide were reported to have different subtypes. The geographic region and sample size have an impact on the prevalence rate. Therefore, more *Blastocystis* epidemiological studies are necessary for most countries.

Studies on *Blastocystis* in non-human primates (NHP) were the most commonly being reported with diverse species being examined worldwide as well as higher number of individuals were examined. In contrast, the less frequently wildlife being studied was the reptiles. Thus, further studies are needed to obtain more information on the role of these animal with *Blastocystis* infection.

Detection of human subtypes namely, ST1-ST9 in most group of animals except in reptile indicated that transmission may occur between human and animal. As *Blastocystis* has lack host specificity and variety of wildlife animals were found to be infected with this organism thus *Blastocystis* could serve as a significant reservoir for human infection. Further studies should be expended on wildlife, captive animals, and the interaction in humans transmission are required to identify the zoonotic association and risk factor of this protozoan parasite in those animals.

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

REFERENCES

Abe, N., Nagoshi, M., Takami, K., Sawano, Y. & Yoshikawa, H. (2002). A survey of *Blastocystis* sp. in livestock, pets, and zoo animals in Japan. *Veterinary Parasitology* **106**: 203-212.

https://doi.org/10.1016/S0304-4017(02)00050-X

- Abe, N., Wu, Z. & Yoshikawa, H. (2003). Molecular characterization of Blastocystis isolates from primates. Veterinary Parasitology 113: 321-325. https://doi.org/10.1016/S0304-4017(03)00081-5
- AbuOdeh, R., Ezzedine, S., Madkour, M., Stensvold, C.R., Samie, A., Nasrallah, G., AlAbsi, E. & ElBakri, A. (2019). Molecular subtyping of *Blastocystis* from diverse animals in the United Arab Emirates. *Protist* **170**: 125679. https://doi.org/10.1016/j.protis.2019.125679
- Adrus, M., Zainudin, R., Ahamad, M., Jayasilan, M.A. & Abdullah, M.T. (2019). Gastrointestinal parasites of zoonotic importance observed in the wild, urban, and captive populations of non-human primates in Malaysia. *Journal of Medical Primatology* 48: 22-31. https://doi.org/10.1111/jmp.12389
- Ahmed, S.A. & Karanis, P. (2018). An overview of methods/techniques for the detection of *Cryptosporidium* in food samples. *Parasitology Research* 117: 629-653. https://doi.org/10.1007/s00436-017-5735-0
- Ahmed, S.A. & Karanis, P. (2019). *Blastocystis* spp., ubiquitous parasite of human, animals and environment. In: Encyclopedia of Environmental Health, Nriagu, J.O. (editor) 2nd edition. USA, MA, Burlington: Elsevier Inc. https://doi.org/10.1016/B978-0-12-409548-9.10947-9
- Alfellani, M.A., Jacob, A.S., Perea, N.O., Krecek, R.C., Taner-Mulla, D., Verweij, J.J., Levecke, B., Tannich, E., Clark, C.G. & Stensvold, C.R. (2013a). Diversity and distribution of *Blastocystis* sp. subtypes in non-human primates. *Parasitology* **140**: 966-971. https://doi.org/10.1017/S0031182013000255
- Alfellani, M.A., Taner-Mulla, D., Jacob, A.S., Imeede, C.A., Yoshikawa, H., Stensvold, C.R. & Clark, C.G. (2013b). Genetic diversity of *Blastocystis* in livestock and zoo animals. *Protist* **164**: 497-509. https://doi.org/10.1016/j.protis.2013.05.003

- Asghari, A., Sadraei, J., Pirestani, M. & Mohammadpour, I. (2019). First molecular identification and subtype distribution of *Blastocystis* sp. isolated from hooded crows (Corvus cornix) and pigeons (Columba livia) in Tehran Province, Iran. *Comparative Immunology, Microbiology and Infectious Diseases* 62: 25-30. https://doi.org/10.1016/j.cimid.2018.11.013
- Betts, E.L., Gentekaki, E., Thomasz, A., Breakell, V., Carpenter, A.I. & Tsaousis, A.D. (2018). Genetic diversity of *Blastocystis* in non-primate animals. *Parasitology* 145: 1228-1234.
- https://doi.org/10.1017/S0031182017002347 Betts, E.L., Gentekaki, E. & Tsaousis, A.D. (2020). Exploring micro-eukaryotic diversity in the gut: Co-occurrence of *Blastocystis* subtypes and other

protists in zoo animals. *Frontiers in Microbiology* **11**: 288. https://doi.org/10.3389/fmicb.2020.00288

- Boreham, P.F.L. & Stenzel, D.J. (1993). *Blastocystis* in humans and animals: morphology, biology, and epizootiology. *Advances in Parasitology* **32**: 1-70. https://doi.org/10.1016/S0065-308X(08)60206-7
- Chai, Y., Deng, L., Liu, H., Yao, J., Zhong, Z., Fu, H., Shen, L., Zhou, Z., Deng, J., Hu, Y. et al. (2020). First subtyping of Blastocystis sp. from pet rodents in southwestern China. International Journal for Parasitology: Parasites and Wildlife 11: 143-148. https://doi.org/10.1016/j.ijppaw.2020.01.012
- Chen, S., Meng, W., Zhou, Z., Deng, L., Shi, X., Chai, Y., Liu, H., Cheng, Y., Zhong, Z., Fu, H. *et al.* (2021). Genetic characterization and zoonotic potential of *Blastocystis* from wild animals in Sichuan Wolong National Natural Reserve, Southwest China. *Parasite* 28: 73. https://doi.org/10.1051/parasite/2021071
- Cian, A., El Safadi, D., Osman, M., Moriniere, R., Gantois, N., Benamrouz-Vanneste, S., Delgado-Viscogliosi, P., Guyot, K., Li, L.L., Monchy, S. *et al.* (2017). Molecular epidemiology of *Blastocystis* sp. in various animal groups from two French zoos and evaluation of potential zoonotic risk. *PLoS ONE* **12**: e0169659. https://doi.org/10.1371/journal.pone.0169659
- Deng, L., Chai, Y., Zhou, Z., Liu, H., Zhong, Z., Hu, Y., Fu, H., Yue, C. & Peng, G. (2019). Epidemiology of *Blastocystis* sp. infection in China: A systematic review. *Parasite* 26: 41. https://doi.org/10.1051/parasite/2019042
- Deng, L., Yao, J., Chen, S., He, T., Chai, Y., Zhou, Z., Shi, X., Liu, H., Zhong, Z., Fu, H. et al. (2021). First identification and molecular subtyping of *Blastocystis* sp. in zoo animals in southwestern China. *Parasites and Vectors* 14: 1-11. https://doi.org/10.1186/s13071-020-04515-2
- Drakulovski, P., Bertout, S., Locatelli, S., Butel, C., Pion, S., Mpoudi-Ngole, E., Delaporte, E., Peeters, M. & Mallié, M. (2014). Assessment of gastrointestinal parasites in wild chimpanzees (*Pan troglodytes troglodytes*) in southeast Cameroon. *Parasitology Research* 113: 2541-2550. https://doi.org/10.1007/s00436-014-3904-y
- Duda, A., Stenzel, D.J. & Boreham, P.F.L. (1998). Detection of *Blastocystis* sp. in domestic dogs and cats. *Veterinary Parasitology* **76**: 9-17. https://doi.org/10.1016/S0304-4017(97)00224-0
- Farah Haziqah, M.T., Mohd Zain, S.N., Chandrawathani, P., Premaalatha, B., Mohd Khairul Nizam, M.K., Arutchelvan, R. & Suresh, K. (2018). Genetic diversity of rodent *Blastocystis* sp. from Peninsular Malaysia. *Tropical Biomedicine* 35: 586-592.
- Geng, H.L., Sun, Y.Z., Jiang, J., Sun, H.T., Li, Y.G., Qin, S.Y., Wang, Z.J., Ma, T., Zhu, J.H., Xue, N.Y. et al. (2021). The Presence of Blastocystis in Tibetan Antelope (Pantholops hodgsonii). Frontiers in Cellular and Infection Microbiology 11. https://doi.org/10.3389/fcimb.2021.747952
- Goe, A.M., Heard, D.J., Easley, J.R., Weeden, A.L., Childress, A.L. & Wellehan, J.F.X. (2016). Blastocystis sp. and Blastocystis ratti in a Brazilian Porcupine (*Coendou Prehensilis*) with diarrhea. Journal of Zoo and Wildlife Medicine 47: 640-644. https://doi.org/10.1638/2015-0093.1
- Greige, S., El Safadi, D., Khaled, S., Gantois, N., Baydoun, M., Chemaly, M., Benamrouz-Vanneste, S., Chabé, M., Osman, M., Certad, G. et al. (2019). First report on the prevalence and subtype distribution of *Blastocystis* sp. in dairy cattle in Lebanon and assessment of zoonotic transmission. Acta Tropica 194: 23-29. https://doi.org/10.1016/j.actatropica.2019.02.013
- Helenbrook, W.D., Shields, W M. & Whipps, C.M. (2015). Characterization of Blastocystis species infection in humans and mantled howler monkeys, Alouatta palliata aequatorialis, living in close proximity to one another. Parasitology Research 114: 2517-2525. https://doi.org/10.1007/s00436-015-4451-x
- Helenbrook, W.D. & Whipps, C.M. (2021). Molecular characterization of Blastocystis in captive and free-ranging new world primates, Platyrrhini. Acta Parasitologica 66: 1267-1273. https://doi.org/10.1007/s11686-021-00397-1

- Hemalatha, C., Chandrawathani, P., Premaalatha, B., Geethamalar, S., Sabapathy, D. & Ramlan, M. (2014). The diagnosis of *Blastocystis* sp. from animals – an emerging zoonosis. *Malaysian Journal of Veterinary Research* 5: 15-22.
- Kaczmarek, A., Sobociński, W., Wesołowska, M., Gołąb, E., Kołodziej-Sobocińska, M. & Sałamatin, R. (2021). Blastocystis occurrence and subtype diversity in wild European terrestrial mammals – The case of Białowieża Primeval Forest (NE Poland). International Journal for Parasitology: Parasites and Wildlife 16: 120-125. https://doi.org/10.1016/j.ijppaw.2021.08.010
- Katsumata, M., Yoshikawa, H., Tokoro, M., Mizuno, T., Nagamoto, T., Hendarto, J., Asih, P.B.S., Rozi, I.E., Kimata, I., Takami, K. *et al.* (2018). Molecular phylogeny of *Blastocystis* isolates from wild rodents captured in Indonesia and Japan. *Parasitology Research* **117**: 2841-2846. https://doi.org/10.1007/s00436-018-5973-9
- Lee, I.L., Tan, T.C., Tan, P.C., Nanthiney, D.R., Biraj, M.K., Surendra, K.M. & Suresh, K.G. (2012). Predominance of *Blastocystis* sp. subtype 4 in rural communities, Nepal. *Parasitology Research* **110**: 1553-1562. https://doi.org/10.1007/s00436-011-2665-0
- Lee, H., Seo, M.G., Oem, J.K., Kim, Y.-S., Lee, S.-Y., Kim, J., Jeong, H., Jheong, W.H., Kim, Y., Lee, W.J. et al. (2020). Molecular detection and subtyping of *Blastocystis* detected in Wild Boars (*Sus scrofa*) in South Korea. *Journal* of Wildlife Diseases 56: 662-666. https://doi.org/10.7589/2019-04-092
- Li, J., Karim, M.R., Li, D., Rahaman Sumon, S.M.M., Siddiki, S.H.M.F., Rume, F.I., Sun, R., Jia, Y. & Zhang, L. (2019). Molecular characterization of *Blastocystis* sp. in captive wildlife in Bangladesh National Zoo: Nonhuman primates with high prevalence and zoonotic significance. *International Journal for Parasitology: Parasites and Wildlife* **10**: 314-320. https://doi.org/10.1016/j.ijppaw.2019.11.003
- Li, T.S., Zou, Y., Ma, Y.T., Ma, Y.Y., Chen, H., Liang, X.X., Cong, W., Sun, X.L. & Zhu, X.Q. (2020a). Molecular characterization of *Eimeria* spp. and *Blastocystis* in rabbits in Shandong Province, China. *Parasitology Research* **119**: 1547-1551. https://doi.org/10.1007/s00436-020-06652-0
- Li, X.D., Zou, Y., Pan, J., Liang, Q.L., Zeng, Z., Meng, Y.M., Wang, X.L., Wang, H.N. & Zhu, X.Q. (2020b). Prevalence and subtypes of *Blastocystis* sp. infection in zoo animals in three cities in China. *Parasitology Research* 119: 465-471. https://doi.org/10.1007/s00436-019-06571-9
- Lim, Y.A.L., Ngui, R., Shukri, J., Rohela, M. & Mat Naim, H.R. (2008). Intestinal parasites in various animals at a zoo in Malaysia. *Veterinary Parasitology* 157: 154-159. https://doi.org/10.1016/j.vetpar.2008.07.015
- Liu, X., Zhang, S., Dong, H., Wang, R., Zhang, L. & Ge, Y. (2021). Prevalence and molecular characteristics of *Blastocystis* sp. from Peafowl (*Pavo cristatus*) in China. *The Journal of Parasitology* **107**: 790-793. https://doi.org/10.1645/19-72
- Ma, L., Qiao, H., Wang, H., Li, S., Zhai, P., Huang, J. & Guo, Y. (2020a). Molecular prevalence and subtypes of *Blastocystis* sp. in primates in northern China. *Transboundary and Emerging Diseases* 67: 2789-2796. https://doi.org/10.1111/tbed.13644
- Ma, Y.T., Liu, Q., Xie, S.C., Li, X.D., Ma, Y.Y., Li, T.S., Gao, W.W. & Zhu, X.Q. (2020b). Prevalence and Subtypes of *Blastocystis* in Alpacas, Vicugna pacos in Shanxi Province, China . *Korean Journal of Parasitology* 58: 181-184. https://doi.org/10.3347/kjp.2020.58.2.181
- Maloney, J.G., Molokin, A., da Cunha, M.J.R., Cury, M.C. & Santin, M. (2020). Blastocystis subtype distribution in domestic and captive wild bird species from Brazil using next generation amplicon sequencing. Parasite Epidemiology and Control 9: e00138. https://doi.org/10.1016/j.parepi.2020.e00138
- Maloney, J.G. & Santin, M. (2021). Mind the gap: New full-length sequences of Blastocystis subtypes generated via oxford nanopore minion sequencing allow for comparisons between full-length and partial sequences of the small subunit of the ribosomal RNA gene. Microorganisms 9: 997. https://doi.org/10.3390/microorganisms9050997
- Marietto-Gonçalves, G.A., Fernandes, T.M., Silva, R.J., Lopes, R.S. & Andreatti Filho, R.L. (2008). Intestinal protozoan parasites with zoonotic potential in birds. *Parasitology Research* **103**: 1237-1240. https://doi.org/10.1007/s00436-008-1125-y
- Martinez-Hernandez, F., Martinez-Ibarra, J.A., Lopez-Escamilla, E., Villanueva-Garcia, C., MuDoz-Garcia, C.I., Rendon-Franco, E., Maravilla, P. & Villalobos, G. (2020). Molecular genotyping of *Blastocystis* spp. in wild mammals from Mexico. *Parasitology Research* **119**: 97-104. https://doi.org/10.1007/s00436-019-06530-4
- Mirzapour, A., Kiani, H., Mobedi, I., Spotin, A., Seyyed Tabaei, S.J. & Rahimi, M. (2018). Frequency of intestinal parasites among zoo animal by morphometric criteria and first report of the bivitellobilharzia nairi from elephant (*Elephasmaximus maximus*) in Iran. *Iranian Journal of Parasitology* 13: 611-617.

- Mohd Zain, S.N., Farah Haziqah, M.T., Woh, P.Y., Fazly Ann, Z., Vickneshwaran,
 M., Mohd Khalid, M.K.N., Arutchelvan, R. & Suresh, K. (2017).
 Morphological and molecular detection of *Blastocystis* in wildlife from
 Tioman Island, Malaysia. *Tropical Biomedicine* 34: 249-255.
- Ni, H.B., Gong, Q.L., Zhang, N.Z., Zhao, Q., Tao, W.F., Qiu, H.Y., Fei, Y.C. & Zhang, X.X. (2021). Molecular detection of *Blastocystis* in black bears and sika deer in northern China. *Parasitology Research*, 120(4), 1481-1487. https://doi.org/10.1007/s00436-021-07068-0
- Noël, C., Dufernez, F., Gerbod, D., Edgcomb, V.P., Delgado-Viscogliosi, P., Ho, L.C., Singh, M., Wintjens, R., Sogin, M.L., Capron, M. *et al.* (2005).
 Molecular phylogenies of *Blastocystis* isolates from different hosts: Implications for genetic diversity, identification of species, and zoonosis. *Journal of Clinical Microbiology* **43**: 348-355.
 https://doi.org/10.1128/JCM.43.1.348-355.2005
- Oliveira-Arbex, A.P., David, É.B., Tenório, M.da S., Cicchi, P.J.P., Patti, M., Coradi, S.T., Lucheis, S.B., Jim, J. & Guimarães, S. (2020). Diversity of *Blastocystis* subtypes in wild mammals from a zoo and two conservation units in southeastern Brazil. *Infection, Genetics and Evolution* 78: 104053. https://doi.org/10.1016/j.meegid.2019.104053
- Parkar, U., Traub, R.J., Kumar, S., Mungthin, M., Vitali, S., Leelayoova, S., Morris, K. & Thompson, R.C.A. (2007). Direct characterization of *Blastocystis* from faeces by PCR and evidence of zoonotic potential. *Parasitology* 134: 359-367. https://doi.org/10.1017/S0031182006001582
- Parkar, U., Traub, R.J., Vitali, S., Elliot, A., Levecke, B., Robertson, I., Geurden, T., Steele, J., Drake, B. & Thompson, R.C.A. (2010). Molecular characterization of *Blastocystis* isolates from zoo animals and their animal-keepers. *Veterinary Parasitology* **169**: 8-17. https://doi.org/10.1016/j.vetpar.2009.12.032
- Pérez Cordón, G., Hitos Prados, A., Romero, D., Sánchez Moreno, M., Pontes, A., Osuna, A. & Rosales, M.J. (2008). Intestinal parasitism in the animals of the zoological garden "Peña Escrita" (Almuñecar, Spain). Veterinary Parasitology 156: 302-309.
 - https://doi.org/10.1016/j.vetpar.2008.05.023
- Petrášová, J., Uzlíková, M., Kostka, M., Petrželková, K.J., Huffman, M.A. & Modrý, D. (2011). Diversity and host specificity of *Blastocystis* in syntopic primates on Rubondo Island, Tanzania. *International Journal for Parasitology* **41**: 1113-1120.

https://doi.org/10.1016/j.ijpara.2011.06.010

- Ponce Gordo, F., Herrera, S., Castro, A.T., García Durán, B. & Martínez Díaz, R.A. (2002). Parasites from farmed ostriches (*Struthio camelus*) and rheas (*Rhea americana*) in Europe. *Veterinary Parasitology* **107**: 137-160. https://doi.org/10.1016/S0304-4017(02)00104-8
- Ramírez, J.D., Sánchez, L.V., Bautista, D.C., Corredor, A.F., Flórez, A.C. & Stensvold, C.R. (2014). *Blastocystis* subtypes detected in humans and animals from Colombia. *Infection, Genetics and Evolution* 22: 223-228. https://doi.org/10.1016/j.meegid.2013.07.020
- Ren, M., Song, J., Yang, F., Zou, M., Wang, P., Wang, D., Zhang, H., Zhao, G. & Lin, Q. (2019). First genotyping of *Blastocystis* in yaks from Qinghai Province, northwestern China. *Parasites & Vectors* **12**: 171. https://doi.org/10.1186/s13071-019-3436-5
- Renelies-Hamilton, J., Noguera-Julian, M., Parera, M., Paredes, R., Pacheco, L., Dacal, E., Saugar, J.M., Rubio, J.M., Poulsen, M., Köster, P.C. & Carmena, D. (2019). Exploring interactions between *Blastocystis* sp., *Strongyloides* spp. and the gut microbiomes of wild chimpanzees in Senegal. *Infection, Genetics and Evolution* 74: 104010.

https://doi.org/10.1016/j.meegid.2019.104010

- Rivera, W.L. (2008). Phylogenetic analysis of *Blastocystis* isolates from animal and human hosts in the Philippines. *Veterinary Parasitology* **156**: 178-182. https://doi.org/10.1016/j.vetpar.2008.06.001
- Roberts, T., Stark, D., Harkness, J. & Ellis, J. (2013). Subtype distribution of *Blastocystis* isolates from a variety of animals from New South Wales, Australia. *Veterinary Parasitology* **196**: 85-89. https://doi.org/10.1016/j.vetpar.2013.01.011
- Ruaux, C.G. & Stang, B.V. (2014). Prevalence of *Blastocystis* in shelter-resident and client-owned companion animals in the US Pacific Northwest. *PLoS ONE* 9: e107496. https://doi.org/10.1371/journal.pone.0107496
- Rudzińska, M., Kowalewska, B., Waleron, M., Kalicki, M., Sikorska, K. & Szostakowska, B. (2021). Molecular characterization of *Blastocystis* from animals and their caregivers at the Gdaosk Zoo (Poland) and the assessment of zoonotic transmission. *Biology* **10**: 984. https://doi.org/10.3390/biology10100984
- Santín, M., Gómez-Muñoz, M.T., Solano-Aguilar, G. & Fayer, R. (2011). Development of a new PCR protocol to detect and subtype *Blastocystis* spp. from humans and animals. *Parasitology Research* **109**: 205-212. https://doi.org/10.1007/s00436-010-2244-9

- Scicluna, S.M., Tawari, B. & Clark, C.G. (2006). DNA barcoding of *Blastocystis*. Protist **157**: 77-85. https://doi.org/10.1016/j.protis.2005.12.001
- Solaymani-Mohammadi, S., Rezaian, M., Hooshyar, H., Mowlavi, G.R., Babaei, Z. & Anwar, M.A. (2004). Intestinal protozoa in wild boars (*Sus scrofa*) in western Iran. *Journal of Wildlife Diseases* **40**: 801-803. https://doi.org/10.7589/0090-3558-40.4.801
- Stensvold, C.R., Alfellani, M.A., Nørskov-Lauritsen, S., Prip, K., Victory, E.L., Maddox, C., Nielsen, H.V. & Clark, C.G. (2009). Subtype distribution of *Blastocystis* isolates from synanthropic and zoo animals and identification of a new subtype. *International Journal for Parasitology* **39**: 473-479. https://doi.org/10.1016/j.ijpara.2008.07.006
- Stensvold, C.R., Alfellani, M. & Clark, C.G. (2012). Levels of genetic diversity vary dramatically between *Blastocystis* subtypes. *Infection, Genetics and Evolution* 12: 263-273. https://doi.org/10.1016/j.meegid.2011.11.002
- Stensvold, C.R. & Clark, C.G. (2020). Pre-empting Pandora's Box: Blastocystis Subtypes Revisited. Trends in Parasitology 36: 229-232. https://doi.org/10.1016/j.pt.2019.12.009
- Tan, T.C. & Suresh, K.G. (2006). Predominance of amoeboid forms of Blastocystis hominis in isolates from symptomatic patients. Parasitology Research 98: 189-193. https://doi.org/10.1007/s00436-005-0033-7
- Teow, W.L., Ng, G.C., Chan, P.P., Chan, Y.C., Yap, E.H., Zaman, V. & Singh, M. (1992). A survey of *Blastocystis* in reptiles. *Parasitology Research* 78: 453-455. https://doi.org/10.1007/BF00931705
- Vaisusuk, K., Saijuntha, W., Sedlak, S., Thanchomnang, T., Pilap, W., Suksavate, W., Stensvold, C.R. & Tantrawatpan, C. (2018). *Blastocystis* subtypes detected in long-tailed macaques in Thailand – Further evidence of cryptic host specificity. *Acta Tropica* **184**: 78-82. https://doi.org/10.1016/j.actatropica.2017.09.002
- Valença-Barbosa, C., Do Bomfim, T.C.B., Teixeira, B.R., Gentile, R., Da Costa Neto, S.F., Magalhães, B.S.N., De Almeida Balthazar, D., Da Silva, F.A., Biot, R., d'Avila Levy, C.M. *et al.* (2019). Molecular epidemiology of *Blastocystis* isolated from animals in the state of Rio de Janeiro, Brazil. *PLoS ONE* 14: 1-13. https://doi.org/10.1371/journal.pone.0210740
- Villanueva-Garcia, C., Gordillo-Chavez, E.J., Lopez-Escamilla, E., Rendon-Franco, E., Muñoz-Garcia, C.I., Gama, L., Martinez-Flores, W.A., Gonzalez-Rodriguez, N., Romero-Valdovinos, M., Diaz-Lopez, H. *et al.* (2017). Clarifying the cryptic host specificity of *Blastocystis* spp. Isolates from *Alouatta palliata* and *Alouatta Pigra* howler monkeys. *PLoS ONE* 12: e0169637. https://doi.org/10.1371/journal.pone.0169637
- Wang, J., Gong, B., Liu, X., Zhao, W., Bu, T., Zhang, W., Liu, A. & Yang, F. (2018a). Distribution and genetic diversity of *Blastocystis* subtypes in various mammal and bird species in northeastern China. *Parasites and Vectors* 11: 522. https://doi.org/10.1186/s13071-018-3106-z
- Wang, J., Gong, B., Yang, F., Zhang, W., Zheng, Y. & Liu, A. (2018b). Subtype distribution and genetic characterizations of *Blastocystis* in pigs, cattle, sheep and goats in northeastern China's Heilongjiang Province. *Infection, Genetics and Evolution* 57: 171-176.
- https://doi.org/10.1016/j.meegid.2017.11.026
- Wang, W., Cuttell, L., Bielefeldt-Ohmann, H., Inpankaew, T., Owen, H. & Traub, R.J. (2013). Diversity of *Blastocystis* subtypes in dogs in different geographical settings. *Parasites & Vectors* 6: 215. https://doi.org/10.1186/1756-3305-6-215
- Xiao, X., Zhou, S.H., Jiang, N., Tian, D.Z., Zhou, Z.M., Zhang, M., Ke, H., Jiang, X.C., Lv, W.L. & Gao, Q.H. (2019). First record of *Leptospira* and *Blastocystis* infections in captive flying squirrels (*Trogopterus xanthipes*) from Enshi County, China. Acta Tropica 197: 105065. https://doi.org/10.1016/j.actatropica.2019.105065

- Yaghoobi, K., Sarkari, B., Mansouri, M. & Motazedian, M.H. (2016). Zoonotic intestinal protozoan of the wild boars, *Sus scrofa*, in Persian Gulf's coastal area (Bushehr province), Southwestern Iran. *Veterinary World* 9: 1047-1050. https://doi.org/10.14202/vetworld.2016.1047-1050
- Yong, L.H., Ambu, S., Devi, S. & Maung, M. (2008). Detection of protozoan and bacterial pathogens of public health importance in faeces of *Corvus* spp. (large-billed crow). *Tropical Biomedicine* 25: 134-139.
- Yoshikawa, H., Abe, N. & Wu, Z. (2003a). Genomic polymorphism among Blastocystis isolates and development of PCR-based identification of zoonotic isolates. Journal of Eukaryotic Microbiology 50: 710-711. https://doi.org/10.1111/j.1550-7408.2003.tb00698.x
- Yoshikawa, H., Wu, Z., Nagano, I. & Takahashi, Y. (2003b). Molecular comparative studies among *Blastocystis* isolates obtained from humans and animals. *Journal of Parasitology* 89: 585-594.
 - https://doi.org/10.1645/0022-3395(2003)089[0585:MCSABI]2.0.CO;2
- Yoshikawa, H., Wu, Z., Pandey, K., Pandey, B.D., Sherchand, J.B., Yanagi, T. & Kanbara, H. (2009). Molecular characterization of *Blastocystis* isolates from children and rhesus monkeys in Kathmandu, Nepal. *Veterinary Parasitology* **160**: 295-300.
 - https://doi.org/10.1016/j.vetpar.2008.11.029
- Yoshikawa, H., Abe, N. & Wu, Z. (2004). PCR-based identification of zoonotic isolates of *Blastocystis* from mammals and birds. *Microbiology* 150: 1147-1151. https://doi.org/10.1099/mic.0.26899-0
- Yoshikawa, H., Tokoro, M., Nagamoto, T., Arayama, S., Asih, P.B.S., Rozi, I.E. & Syafruddin, D. (2016). Molecular survey of *Blastocystis* sp. from humans and associated animals in an Indonesian community with poor hygiene. *Parasitology International* 65: 780-784. https://doi.org/10.1016/j.parint.2016.03.010
- Zanzani, S., Epis, S., Bandi, C. & Manfredi, M.T. (2014). What is your diagnosis? Fecal smear stained with Lugol's solution and Giemsa from a cynomolgus macaque (*Macaca fascicularis*) presenting with liquid diarrhea. *Veterinary Clinical Pathology* **43**: 293-294. https://doi.org/10.1111/vcp.12128
- Zanzani, S.A., Gazzonis, A.L., Epis, S. & Manfredi, M.T. (2016). Study of the gastrointestinal parasitic fauna of captive non-human primates (*Macaca fascicularis*). Parasitology Research **115**: 307-312. https://doi.org/10.1007/s00436-015-4748-9
- Zhang, K., Zheng, S., Wang, Y., Wang, K., Wang, Y., Gazizova, A., Han, K., Yu, F., Chen, Y. & Zhang, L. (2021a). Occurrence and molecular characterization of *Cryptosporidium* spp., *Giardia duodenalis, Enterocytozoon bieneusi*, and *Blastocystis* sp. in captive wild animals in zoos in Henan, China. *BMC Veterinary Research* 17: 322. https://doi.org/10.1186/s12917-021-03035-0
- Zhang, Q., Yin, W., Wang, X., Zhang, Z., Zhang, R. & Duan, Z. (2021b). Blastocystis infection and subtype distribution in domestic animals in the Qinghai-Tibetan Plateau Area (QTPA) in China: A preliminary study. Parasitology International 81: 102272. https://doi.org/10.1016/j.parint.2020.102272
- Zhao, G.H., Hu, X.F., Liu, T.L., Hu, R.S., Yu, Z.Q., Yang, W.B., Wu, Y.L., Yu, S.K. & Song, J.K. (2017). Molecular characterization of *Blastocystis* sp. in captive wild animals in Qinling Mountains. *Parasitology Research* 116: 2327-2333. https://doi.org/10.1007/s00436-017-5506-y
- Zhu, W., Wei, Z., Li, Q., Lin, Y., Yang, H. & Li, W. (2020). Prevalence and subtype diversity of *Blastocystis* in human and nonhuman primates in North China. *Parasitology Research* **119**: 2719-2725. https://doi.org/10.1007/s00436-020-06761-w