RESEARCH ARTICLE

Salmonella enterica subsp. enterica serovar Typhimurium and Lactobacillus spp. interactions in vitro elicit improved antimicrobial production

Nicdao, M.A.^{1,2*}, Ingalla, P.C.¹, Ibana, J.¹

¹Immunopharmacology Research Laboratory, Institute of Biology, University of the Philippines, Quezon City, Philippines ²College of Arts and Sciences, Pampanga State Agricultural University, Pampanga, Philippines *Corresponding author: nicdao.michaelangelo@gmail.com

ARTICLE HISTORY

ABSTRACT

Received: 5 September 2022 Revised: 8 December 2022 Accepted: 8 December 2022 Published: 28 February 2023 Antimicrobial resistance (AMR) is a global health crisis. Despite the drug discovery efforts, AMR is increasing, and discoveries are nearly nil. It is thus critical to design new strategies. Probiotics are tapped as alternatives to antibiotics for the treatment of gut-associated diseases. Lactobacillus species, common in food products, can inhibit the growth of gut pathogens. Here, we demonstrate the antimicrobial activities of Lactobacillus species - Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus are enhanced when cocultured with Salmonella enterica subsp. enterica serovar Typhimurium. Cell-free culture supernatants (CFCS) from cocultures of Lactobacillus spp. and Salmonella enterica serovar Typhimurium more potently inhibit pathogen growth than their monoculture counterparts. Interestingly, we discovered that Salmonella enterica serovar Typhimurium could enhance the production of antimicrobials from Lactobacillus spp., most evident in L. delbrueckii subsp. bulgaricus. Also, L. delbrueckii subsp. bulgaricus CFCS upregulates key Salmonella virulence genes, hilA and sipA. Whether this increases Salmonella's pathogenicity in vivo or reduces pathogen fitness and growth inhibition in vitro warrants further investigation. We propose that these probiotic isolates may be utilized for innovative natural food processing and preservation strategies to control Salmonella food contaminations. Importantly, our findings that Salmonella elicits an enhanced antimicrobial activity from Lactobacillus spp. provide evidence of a pathogen-mediated elicitation of antimicrobial production. Therefore, extending this phenomenon to other microbial interactions may help augment the strategies for drug discovery.

Keywords: Antimicrobial resistance; coculture; elicitation; probiotics; Salmonella infection.

INTRODUCTION

Nature provides science with a rich tapestry of natural products for drug discovery and development. Of the approved antibacterial agents from 1981 to 2019, 48% were obtained from natural products or derivatives (Newman & Cragg, 2020). Besides plants, microorganisms constitute a significant source of bioactive secondary metabolites with various biological functions (Pham *et al.*, 2019). However, the traditional antibiotic discovery method by culturing pure bacterial cultures in the laboratory has two major obstacles that hinder the discovery process. First, standard laboratory microbial culture conditions do not guarantee bioactivity manifestation, and second, even if the compound is produced, the yield is insufficient to proceed with further undertaking.

The continuous exposure of microorganisms to various interactions or stimuli in their natural environment triggers bioactive secondary metabolites' expression for survival. Sequencing and genome mining show that microbes contain an array of biosynthetic gene clusters (BGCs) that allow bioactive compounds' production. However, most BGCs remain cryptic or silent when microbes are cultured in the laboratory due to

Published by Malaysian Society of Parasitology and Tropical Medicine. All rights reserved. the absence of environmental cues (Rutledge & Challis, 2015). Additionally, most compounds produced in the laboratory result in low yields, limiting the antibiotic discovery process.

These problems can be circumvented by mimicking the interactions *in vitro* to activate the silent BGCs and possibly increasing the extract yield through cocultivation or coculture methods (Yu *et al.*, 2019; Nguyen *et al.*, 2020). Cocultivation is primarily used to elucidate interactions of populations, such as antagonism, competition, and symbiosis (Goers *et al.*, 2014). In the context of drug discovery, signaling molecules/soluble factors released by a microbe (challenger) may act as an elicitor for the target microbe (challenged isolate) to activate BGCs and secrete antimicrobial substances that can be harnessed for medicinal purposes (Goers *et al.*, 2014; Zhuang *et al.*, 2019).

Probiotics are live microorganisms that provide health benefits for humans and animals when consumed adequately (FAO/WHO, 2001; Hill *et al.*, 2014). They have been shown to produce antimicrobial substances, such as bacteriocins, lactic acid, hydrogen peroxide, and organic acids, that allow them to competitively exclude pathogens in the gut, including some antibiotic-resistant species (Djadouni & Kihal, 2012; Chen *et al.*, 2019). Because it is generally recognized as safe (GRAS) for consumption, probiotics might be useful as an alternative for managing antibiotic resistance through cellmediated treatment, particularly in gut-related infections where its activity is concentrated, such as *Salmonella* infection. In the Philippines, *Salmonella* is one of the leading causes of foodborne infections (Azanza *et al.*, 2019), making *Salmonella* infection the leading cause of mortality among reported cases of intestinal infection, but their overuse and misuse accelerate the development of pathogen resistance, rendering frequently used antimicrobials ineffective in treating *Salmonella* infections (Holmberg *et al.*, 1984; Velge *et al.*, 2005; Ventola, 2015).

Despite the efforts to discover and develop more potent antibiotics, the rapid acceleration of antimicrobial resistance combined with the slow progression of the discovery prompts antibiotic exploration using alternative methods. Based on the idea that microbial interactions influence the synthesis of secondary metabolites, this study determined if the enteric pathogen *Salmonella* creates soluble components that can enhance or elicit the antimicrobial activity of probiotics.

MATERIALS AND METHODS

Bacteria and Culture Conditions

Previously isolated Lactobacillus spp. (Lactobacillus delbrueckii subspecies bulgaricus IRL 14-03, Lactobacillus casei IRL 14-02, and Lactobacillus paracasei IRL-14-01) from probiotic food products in the Philippines were cultured in DeMan-Rogosa-Sharpe (MRS; HiMedia, Mumbai, India) agar/broth medium at 37°C (Nicdao et al., 2020). The Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella enterica serovar Typhimurium) SL1344 obtained from the Pathogen-Host-Environment Interactions Research Laboratory of the University of the Philippines, Diliman, Quezon City, Philippines and the clinical isolates of Enteropathogenic E. coli (EPEC), Shigella sp., and Salmonella enterica subsp. enterica serovar Typhi provided by Dr. Demetrio L. Valle Jr.⁺ were cultured in Trypticase Soy Broth (TSB; HiMedia) at 37°C. The identities of the microbial isolates were determined by routine culture-based testing and confirmed with 16S rRNA gene sequencing. Working cultures of the bacteria listed above were prepared by washing the cells of fresh cultures with 1X Phosphate Buffered Saline Solution (PBS, pH 7.2), then adjusting the cell concentration to 1.5×10^8 CFU/mL through visual comparison with a 0.5 MacFarland's standard followed by absorbance reading (UV-Vis Spectrophotometer: EpochTM, Biotek, Vermont, USA) at 600 nm in the appropriate culture media.

Cell-to-Cell Interaction in Modified Coculture Media

A nutrient-rich coculture medium was prepared with modifications based on Abhisingha et al. (2018) protocol by mixing an equal proportion of MRS broth and TSB (MRS/TSB). Working inocula of L. delbrueckii subsp. bulgaricus, L. casei, L. paracasei, and Salmonella enterica serovar Typhimurium were prepared in MRS/TSB, as previously described. Three sets of tubes containing the modified medium were prepared for each probiotic isolate. The first set was inoculated with a probiotic species and Salmonella enterica serovar Typhimurium with a final cell concentration calculated to reach 1.0×10^5 CFU/mL. The second set contained probiotics alone (probiotic control), while the third was with Salmonella enterica serovar Typhimurium alone (test bacteria control). All tubes were incubated for 24 hours at 37°C. Serial dilution and aerobic plate count by pour plating were performed for all the setups. The first set of tubes was plated on Salmonella-Shigella Agar (SSA; HiMedia) and MRS agar. The second set was plated on MRS agar and the third on SSA. The SSA plates were incubated for 24 hours and MRS agar for 48 hours at 37°C. Statistical analyses of the counts were done to compare

the cell concentration of probiotic isolate and test bacteria in cocultures and their monoculture counterparts.

Indirect Coculture

Working cultures of the Lactobacillus spp. isolates and Salmonella were prepared and resuspended in a modified nutrientrich medium of MRS/Mueller Hinton Broth (MHB; HiMedia) separately. In a 12-well plate, one milliliter of 1.5 × 10⁶ CFU/mL of each Lactobacillus isolate was dispensed separately. A cell culture insert (FalconTM; Germany) with a 0.40 μm pore size polyethylene terephthalate (PET) membrane bottom was submerged into the inoculated well. One milliliter of 1.5×10^8 CFU/mL of Salmonella was added to the cell inserts. Monoculture setups were prepared in other wells by adding a sterile medium into the cell insert submerged into the Lactobacillus-inoculated well. Salmonella control was also prepared by adding a sterile medium into the well and placing a cell culture insert containing Salmonella. The 12-well plate was incubated at 37°C for 18 hours without agitation. After incubation, culture media from the well and insert were aspirated, centrifuged at 12 000 × g for 10 minutes, and sterilized with a 0.2 µm MilliporeTM syringe filter (Merck; Darmstadt, Germany) to collect the cell-free culture supernatants (CFCS). The coculture cell-free culture supernatants (cCFCS) and monoculture cell-free culture supernatants (mCFCS) were then tested against *Salmonella* using the microbroth culture method.

Direct Coculture

Fresh cultures of *Lactobacillus* isolates and *Salmonella enterica* serovar Typhimurium were prepared, washed, and resuspended in MRS/MHB coculture medium as described in the preparation of working cultures. The suspension of every *Lactobacillus* species was adjusted to 1.5×10^6 CFU/mL (Lb6, Lc6, Lp6). Three suspensions of *Salmonella enterica* serovar Typhimurium containing 1.5×10^6 (St6), 1.5×10^7 (St7), and 1.5×10^8 (St8) CFU/mL were prepared separately. Each *Lactobacillus* isolate was cocultured with the three concentrations of *Salmonella* (designated as Lb6St6, Lb6St7, Lb6St8, etc.). Monocultures of *Lactobacillus* (Lb6, Lc6, Lp6) were also prepared in the coculture medium. All cultures were incubated at 37°C for 18 hours. The cCFCS and mCFCs were collected and tested against *Salmonella* using the microbroth culture method.

Induction with Salmonella Cell-Free Culture Supernatant

Salmonella cell suspension in MHB was prepared at a concentration of 1.5×10^8 CFU/ml. This suspension was dispensed to six separate tubes and incubated at 37°C for 18 hours without agitation. To obtain the cell-free culture supernatant, one tube was sacrificed every three hours, from the third hour until the eighteenth hour, and stored at -20°C until further use. The cell suspension of each Lactobacillus isolates were prepared in MRS broth, and the cell concentration was adjusted to 1.5×10^6 CFU/ ml. Each of the six collected CFCS from Salmonella (St3h, St6h, St9h, St12h, St15h, St18h) was used to induce the antibacterial activity of 1.5×10^6 CFU/ml of each Lactobacillus isolate. The coculture tubes containing equal volumes of Lactobacillus spp. and Salmonella CFCS were incubated at 37°C for 18 hours without agitation. The induced cell-free culture supernatants (iCFCS) from every tube were collected and tested against Salmonella using the microbroth culture method.

Antimicrobial Activity Assessment

The collected CFCS from different coculture setups were tested against *Salmonella* using the microbroth culture method. In a 96-well plate, thirty microliters of CFCS were dispensed, followed by the addition of 270 uL of 1.5×10^6 CFU/mL of *Salmonella*. The control well was dispensed with 270 µl of 1.5×10^6 CFU/mL of *Salmonella* and 30 uL of sterile coculture medium. A blank

well was also prepared by dispensing 300 μL sterile coculture medium. The 96-well plate was incubated at 37°C with one minute of agitation every 30 minutes for six to seven hours or until the growth turbidity absorbance of the *Salmonella* control corresponds to $\approx 1.0 \times 10^9$ CFU/mL. The absorbance was measured using UV-Vis spectrophotometry at 600nm.

Gene Expression Analysis

Working cultures of the Lactobacillus isolates, Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Typhi, Shigella sp., Enteropathogenic E. coli (EPEC), and E. coli ATCC 25922 were prepared in MRS/MHB media as previously described. In a 12-well plate, one milliliter of 1.5×10^6 CFU/mL of each working culture was inoculated in separate wells. Another well was inoculated with one milliliter of sterile MRS/MHB medium. A cell culture insert was placed in all wells, followed by adding one milliliter of 1.5 × 10⁸ CFU/mL of Salmonella enterica serovar Typhimurium. The plate was incubated at 37°C for 18 hours without agitation, and Salmonella enterica serovar Typhimurium cells were collected and processed for RNA extraction using ZR Bacterial RNA Microprep (Zymo Research Corp., California, USA). The collected RNA was reverse transcribed to cDNA using the iScript cDNA Synthesis kit (Bio-Rad Laboratories, California, USA). The RNA, at 10ng/µL concentration, was used to analyze the gene expression of hilA and sipA virulence genes of Salmonella. The relative quantification of hilA and sipA expression of Salmonella was analyzed using the primer pairs hilA/F (5'-CGGAACGTTATTTGCGCCATGCTGAGGTAG-3') and hilA/R (5'-GCATGGATCCCCGCCGG CGAGATTGTG-3') (Pathmanathan and Sa 2003) and sipA/F (5'-CGGCTTCACATTCACAA-3') and sipA/R (5'-CGGGCTCTTTCGT TCA-3') (Hassuny et al., 2015). Quantitative PCR (qPCR) mix was prepared using SsoFast EvaGreen Supermix (Bio-Rad Laboratories) following the manufacturer's recommendations. Cycling conditions for qPCR include enzyme activation at 95°C for 30 seconds, 40 cycles of denaturation at 95°C for 5 seconds, annealing/extension at 65°C for 5 seconds, and a final melt curve at 65-95°C in 0.5°C increment every 2 seconds (Bio-Rad Laboratories). The expression analysis was standardized using 16S rRNA as the reference gene as analyzed using primers 16S 514F (5'-GCAATTGACGTTACCCGCA GAA-3') and 16S 642R (5'- GGATTTCAC ATCCGACTTGACA-3') for both treated and untreated Salmonella culture.

Statistical Analysis

The data from replicated experiment trials were analyzed using IBM SPSS version 23.0 for Mac. Mann-Whitney U test and Tukey's-b were used to determine the statistical significance between samples at $p \le 0.05$.

RESULTS

Probiotic isolates reduce recoverable *Salmonella enterica serovar Typhimurium* cells in coculture growth while maintaining unperturbed growth

The ability of *Lactobacillus* spp. isolates to antagonize the growth of a gut pathogen, *Salmonella enterica* serovar Typhimurium, was investigated by coculturing each probiotic isolate, *Lactobacillus* species: *L. delbrueckii* subsp. *bulgaricus*, *L. casei*, and *L paracasei*, with *Salmonella enterica* serovar Typhimurium in a modified coculture media.

Consistent with previous reports that some lactic acid bacteria (LAB) can inhibit *Salmonella* growth (Kim *et al.*, 2004; Makras & De Vuyst, 2006; Ishikawa *et al.*, 2010), a decrease in the recoverable viable colonies of *Salmonella enterica* serovar Typhimurium from probiotics-pathogen cocultures was observed (Figure 1). When cocultured with probiotic isolates, the recoverable CFUs of *Salmonella enterica* serovar Typhimurium

were lower than the CFUs from the control Salmonella enterica serovar Typhimurium monoculture grown in the same culture medium. From a recoverable cell count of 2.29×10^9 CFU/mL in the pathogen monoculture control, a one-log to a two-log-fold reduction in recoverable CFUs in all coculture setups was observed. Although the CFU trend of CFUs decreased in all coculture setups, the results were statistically not significant at $p \leq 0.05$. Notably, *Lactobacillus delbrueckii* subsp. *bulgaricus* had the highest growth inhibitory effect on Salmonella enterica serovar Typhimurium, reducing recoverable CFU/mL to 3.67×10^7 CFU/mL.

Interestingly, the number of viable cells of *Lactobacillus* spp. isolates were not significantly affected when cocultured with *Salmonella enterica* serovar Typhimurium. The results thus showed that all the *Lactobacillus* spp. isolates can inhibit the growth of *Salmonella enterica* serovar Typhimurium when cocultured *in vitro* while maintaining their growth relatively unperturbed by the pathogen.

Indirect cocultures of probiotic isolates and *Salmonella enterica* serovar Typhimurium produce cell-free culture supernatants (cCFCS) with more potent inhibitory activity than their probiotic monoculture (mCFCS) counterparts

Following the cell-to-cell interaction study between *Lactobacillus* isolates and *Salmonella enterica* serovar Typhimurium, parallel experiments of the *Salmonella enterica* serovar Typhimurium

Figure 1. Recoverable viable colony forming units (CFU/mL) of *Salmonella enterica* serovar Typhimurium and *Lactobacillus* spp. from cocultures. Probiotic *Lactobacillus* spp. isolates (*L. delbrueckii* subsp. *bulgaricus*, *L. casei*, and *L. paracasei*) were cocultured with the *Salmonella enterica* serovar Typhimurium enteric pathogen in a modified nutrient-rich coculture medium for 24 hours at 37°C. The recoverable CFUs were quantified by plating the cocultures on modified selective media. (a) The growth of enteric pathogen *Salmonella enterica* serovar Typhimurium recovered from cocultures. (b) The growth of *Lactobacillus* spp. probiotic isolates recovered from coculture. The values presented are average counts from three independent experiments; error bars represent standard deviations. Values are not significantly different at $p \le 0.05$.

growth inhibitory effects of cell-free culture supernatants from monocultures of Lactobacillus spp. (mCFCS) and Lactobacillus spp. and Salmonella enterica serovar Typhimurium cocultures (cCFCS) were performed by restricting direct cell interaction using a cell culture insert. The growth of untreated Salmonella enterica serovar Typhimurium at A₆₀₀ of 0.616 was significantly reduced to 0.559 ($p \le 0.001$) by treatment with mCFCS of *L. delbrueckii* subsp. *bulgaricus* (Lb6), to 0.448 ($p \le 0.001$) by mCFCS of *L. casei* (Lc6), and to 0.436 ($p \le 0.001$) by *L. paracasei* (Lp6). Interestingly, these reductions in Salmonella enterica serovar Typhimurium growth were further enhanced when cCFCS were used (Figure 2). Growth turbidity was further reduced to A_{600} of 0.495 ($p \le 0.001$) with coculture of Salmonella enterica serovar Typhimurium with L. delbrueckii subsp. bulgaricus (Lb6/St8), to 0.388 ($p \le 0.01$) with *L. casei* (Lc6/St8), and to 0.398 ($p \le 0.01$) with *L. paracasei* (Lp6/St8).

The growth inhibitory effects of cCFCS generated from the indirect coculture were significantly higher than mCFCS collected from three probiotic isolates, suggesting an exchange of soluble factors between *Salmonella enterica* serovar Typhimurium and the *Lactobacillus* spp., which enhances the antagonistic activity of the probiotic isolates against this pathogen.

Increasing cell concentration of *Salmonella enterica* serovar Typhimurium used in coculture with the probiotic isolates increases the growth-inhibitory effect of cCFCS produced

To ascertain that Salmonella enterica serovar Typhimurium elicits an increase in antagonistic activity of Lactobacillus spp. in a concentration-dependent manner, the direct coculture method was conducted with increasing doses of Salmonella enterica serovar Typhimurium. L. delbrueckii subsp. bulgaricus mCFCS demonstrated a 0.498 to 0.147 ($p \le 0.05$) significant decrease of Salmonella enterica serovar Typhimurium A₆₀₀ growth turbidity (Figure 3a) compared to untreated Salmonella enterica serovar Typhimurium control. This activity was enhanced when cCFCS was used - furthermore, the anti-Salmonella enterica serovar Typhimurium activity increased in a Salmonella enterica serovar Typhimurium dose-dependent manner. The cCFCS from L. delbrueckii subsp. bulgaricus cocultured with Salmonella enterica serovar Typhimurium concentration of 1.5 × 10⁶ CFU/mL (Lb6St6) resulted in further decrease in A_{600} to 0.166 ($p \le 0.05$), while the pathogen concentration of 1.5 \times 10^7 CFU/mL (Lb6St7) was lowered to 0.103 ($p \le 0.05$), and at 1.5 × 10⁸ CFU/mL (LbSt8) is at its lowest of 0.095 ($p \le 0.05$) (Figure 3a).

L. casei mCFCS also significantly reduced the *Salmonella* enterica serovar Typhimurium growth from 0.511 to 0.316 ($p \le 0.05$) (Figure 3b). Increasing concentrations of *Salmonella* enterica serovar Typhimurium in cocultures improved the growth inhibitory effects of cCFCS with a dose-dependent decrease of A₆₀₀ to 0.282 ($p \le 0.05$), 0.225 ($p \le 0.05$), up to 0.203 ($p \le 0.05$) at *Salmonella* enterica serovar Typhimurium doses of 1.5×10^6 CFU/

Figure 2. Comparison of the growth of Salmonella enterica serovar Typhimurium treated with cell-free culture supernatants from indirect cocultures (cCFCS) and monocultures (mCFCS). CFCS were collected from cocultures of 1×10^6 CFU/mL L. delbrueckii subsp. bulgaricus and 1×10^8 CFU/mL Salmonella enterica serovar Typhimurium (Lb6/St8), 1 × 10⁶ CFU/mL L. casei and 1 × 10⁸ CFU/mL Salmonella enterica serovar Typhimurium (Lc6/St8), and 1×10^{6} CFU/mL *L. paracasei* and 1×10^{8} CFU/mL *Salmonella* enterica serovar Typhimurium (Lp6/St8) that were incubated for 18 hours at 37°C. CFCSs were added to Salmonella enterica serovar Typhimurium inoculum and incubated for six hours at 37°C. In a parallel experiment, the growth of Salmonella enterica serovar Typhimurium was treated with culture supernatant from 1×10^{6} CFU/mL starting inoculum of probiotic monoculture (mCFCS) (LB6, LC6, and Lp6). The growth of Salmonella enterica serovar Typhimurium on broth cultures was assessed by reading absorbance values at 600 nm. The values presented are average readings from three experiments. Values significantly different from the control are indicated by asterisk(s) (* at $p \le 0.05$; ** at $p \le 0.01$; *** at $p \le 0.001$).

Figure 3. Growth absorbance of *Salmonella* treated with cell-free culture supernatants collected from direct cocultures (cCFCS) of *Lactobacillus* spp. and different cell concentrations of *Salmonella enterica* serovar Typhimurium. CFCS were collected from cocultures of either *L. delbrueckii* subsp. *bulgaricus* (Lb6), *L. casei* (Lc6), or *L. paracasei* (Lp6) and increasing doses of *Salmonella enterica* serovar Typhimurium (St6, /St7, or /St8). Collected cCFCS were tested against *Salmonella enterica* serovar Typhimurium, and corresponding probiotic monoculture (mCFCS) (Lb6, Lc6, and Lp6) were compared. The growth of *Salmonella enterica* serovar Typhimurium in broth cultures was assessed by reading absorbance values at 600 nm. (a) The growth of *Salmonella enterica* serovar Typhimurium treated with cCFCS from cocultures with *L. delbrueckii* subsp. *bulgaricus*, (b) the growth of *Salmonella enterica* serovar Typhimurium treated with cCFCS from cocultures with *L. casei*, and (c) the growth of *Salmonella enterica* serovar Typhimurium treated with *L. paracasei*. The values presented are average readings from three experiments; error bars represent standard deviations. Values that are significantly different from the control are indicated by a different letter ($p \le 0.05$).

mL (Lc6St6), 1.5×10^7 CFU/mL (Lc6St7), and 1.5×10^8 CFU/mL, respectively (Figure 3b).

A similar trend was observed in *L. paracasei* with a decrease in growth turbidity absorbance reading of 0.505 to 0.379 ($p \le$ 0.05) (Figure 3c) when *Salmonella enterica* serovar Typhimurium was treated with mCFCSalmonella This inhibition was further enhanced when coculture supernatants from *L. paracasei* cocultured with *Salmonella enterica* serovar Typhimurium (cCFCS) were used. The absorbance readings of the growth turbidity of *Salmonella enterica* serovar Typhimurium decreased further to a range of 0.304 to 0.343 ($p \le 0.05$). However, unlike with *L. delbrueckii* subsp. *bulgaricus* and *L. casei*, the inhibitory activity of *L. paracasei* in cocultures did not significantly demonstrate a *Salmonella enterica* serovar Typhimurium dose-dependency at the aforementioned microbial range (Figure 3c).

mCFCS from *Salmonella enterica* serovar Typhimurium elicits the production of inhibitory growth factors in *Lactobacillus* spp. cultures

The interesting findings that CFCS from cocultures of Salmonella enterica serovar Typhimurium and Lactobacillus spp. (cCFCS) more potently inhibits the growth of Salmonella enterica serovar Typhimurium led to our hypothesis that Salmonella enterica serovar Typhimurium releases soluble factors that elicit the production of antagonistic activity from Lactobacillus spp. To test this hypothesis, mCFCS of Salmonella enterica serovar Typhimurium were collected at different time points postinoculation and used to induce monocultures of Lactobacillus spp. to produce anti-Salmonella enterica serovar Typhimurium activity. Consistent with the preceding data sets, mCFCS of L. delbrueckii subsp. bulgaricus (Lb) significantly decreased the growth absorbance (A₆₀₀) of Salmonella enterica serovar Typhimurium untreated control from 0.514 to 0.199 ($p \le 0.05$). It was also found that inducing a monoculture of L. delbrueckii subsp. bulgaricus with Salmonella enterica serovar Typhimurium CFCS collected at different time points of its growth enhanced the anti-Salmonella activity of L. delbrueckii subsp. bulgaricus (Figure 4a). The iCFCS from L. delbrueckii subsp. bulgaricus induced using the supernatant of Salmonella enterica serovar Typhimurium collected at three hours post-inoculation (LbSt3h) significantly reduced the A_{600} to 0.111 ($p \le 0.05$) compared to uninduced mCFCS. Treatments of L. delbrueckii subsp. bulgaricus cultures induced with 6 hours, 9 hours, and 12 hours of Salmonella enterica serovar Typhimurium culture supernatant (LbSt6h,

LbSt9h, LbSt12h) also significantly decreased the A₆₀₀ ranging from 0.111 to 0.119 ($p \le 0.05$). Treatment with iCFCS induced with 15-hour *Salmonella enterica* serovar Typhimurium supernatant (LbSt15) was 0.143 ($p \le 0.05$) and at 18-hours (LbSt18) 0.169 ($p \le 0.05$) (Figure 4a).

The growth of untreated Salmonella enterica serovar Typhimurium control also decreased from A_{600} of 0.514 to 0.372 ($p \le 0.05$) when treated with monoculture supernatant of *L. casei* (Lc). A further decrease was observed when Salmonella enterica serovar Typhimurium was treated with iCFCS from *L. casei* induced with Salmonella enterica serovar Typhimurium supernatant collected at different hours post-inoculation referred to as LcSt3h, LcSt6h, LcSt9h, LcSt12h, LcSt15h, LcSt18h. The growth turbidity A_{600} values ranged from 0.327 to 0.354 ($p \le 0.05$), which were not statistically different between treatments but significantly lower than the values of untreated control and mCFCS-treated Salmonella enterica serovar Typhimurium cultures (Figure 4b).

L. paracasei monoculture CFCS inhibited *Salmonella enterica* serovar Typhimurium growth as reflected by the decrease in A₆₀₀ growth turbidity values of untreated control from 0.643 to 0.502 ($p \le 0.05$) upon treatment with *L. paracasei* monoculture CFCS (Lp). *Salmonella enterica* serovar Typhimurium growth inhibition was also enhanced in cultures treated with iCFCS from *L. paracasei* (LpSt3h, LpSt6h, LpSt9h, LpSt12h, LpSt15h, LpSt18h) with A₆₀₀ ranging from 0.374 to 0.391 ($p \le 0.05$), which were not statistically different among different time points but were all significantly lower than the control and monoculture setup (Figure 4c).

Altogether, the data demonstrated that Salmonella enterica serovar Typhimurium can elicit the production of more potent antagonistic soluble factors from Lactobacillus spp. and that this phenomenon is most evident in L. delbrueckii subsp. bulgaricus. These findings suggest that this probiotic isolate can be induced to respond more vigorously to antagonize the growth of an enteric pathogen.

Salmonella enterica serovar Typhimurium-L. delbrueckii subsp. bulgaricus coculture interaction increases hilA and sipA gene expression in Salmonella enterica serovar Typhimurium

To investigate the effects of probiotics and pathogen interactions on key regulatory and pathogenicity gene expressions of *Salmonella enterica* serovar Typhimurium, the transcriptional regulator gene *hilA* of *Salmonella* Pathogenicity Island-1 (SPI-1)

Figure 4. Growth of *Salmonella enterica* serovar Typhimurium treated with induced cell-free culture supernatants (iCFCS) collected from *Lactobacillus* spp. monocultures that were induced with CFCS from monocultures of *Salmonella enterica* serovar Typhimurium collected at different time points. CFCS from *Salmonella enterica* serovar Typhimurium monocultures incubated for 3 hours (St3h), 6 hours (St6h), 9 hours (St9h), 12 hours (St12h), 15 hours (St15h), and 18 hours (St18h) at 37°C were collected and used to treat 1×10^6 CFU/mL inoculum of *Lactobacillus* spp. monocultures to induce the production of inhibitory growth factors. Cell-free culture supernatants from induced probiotic cultures (iCFCS) were used to treat *Salmonella enterica* serovar Typhimurium and incubated for six hours at 37°C. The growth of *Salmonella enterica* serovar Typhimurium in iCFCS from *L. delbrueckii* subsp. *bulgaricus*, (b) Growth of *Salmonella enterica* serovar Typhimurium in iCFCS from *L. casei,* and (c) Growth of *Salmonella enterica* serovar Typhimurium in *L. paracasei*. The values presented are average readings from three experiments. Values that are significantly different from the control are indicated by a different letter ($p \le 0.05$).

Figure 5. Induction of *hilA* and *sipA* gene expression in *Salmonella enterica* serovar Typhimurium. Gene expression of *hilA* and *sipA* quantified from *Salmonella enterica* serovar Typhimurium cocultured for 18 hours with different probiotic *Lactobacillus* isolates and some gut pathogens physically separated by a semi-permeable membrane. Expression of the *hilA* (a) and *sipA* (b) genes of *Salmonella enterica* serovar Typhimurium when cocultured with *L. paracasei* (Lp), *L. delbrueckii* subsp. *bulgaricus* (Lb), *L. casei* (Lc), *Salmonella enterica* serovar Typhi (STyphi), *Shigella* sp. (Sh), Enteropathogenic *E. coli* (EPEC) or *E. coli* ATCC 25922 (Ec). The fold change in gene expression is compared with untreated *Salmonella enterica* serovar Typhimurium (St Control) with a reference value of 1.0. The values presented are averaged from 3 experiments.

and SPI-1 effector gene *sipA* expressions were evaluated by qRT-PCR in coculture experiments. Interestingly, these two genes were upregulated when *Salmonella enterica* serovar Typhimurium was cocultured with *L. delbrueckii* subsp. *bulgaricus*. An approximately 20-fold increase in the *hilA* gene expression (Figure 5a) and a 5-fold increase in the *sipA* gene expression (Figure 5b) were observed. These genes were not significantly affected by *L. casei* and *L. paracasei*. The coculture of *Salmonella enterica* serovar Typhimurium with other enteric bacteria – *Salmonella* Typhi, *Shigella* sp., EPEC, and *E. coli* ATCC 25922 – also did not induce pronounced gene modulation except for *Shigella*, for which a modest increase in gene expression was observed.

These findings demonstrated the interaction of Salmonella enterica serovar Typhimurium with *L. delbrueckii* subsp. bulgaricus elicit active responses from the pathogen that may give insights into how this probiotic can inhibit pathogen growth.

DISCUSSION

In this study, we investigated three *Lactobacillus* species isolated from probiotic food products in the Philippines for their ability to control gut pathogens, particularly *Salmonella enterica* subsp. *enterica* serovar Typhimurium. Interestingly, while testing for the anti-*Salmonella* activity of the *Lactobacillus* isolates, we uncovered an important interaction between Salmonella and Lactobacillus delbrueckii subsp. bulgaricus. Our data suggest that Salmonella secretes a soluble factor that enhances the potency of L. delbrueckii subsp. bulgaricus to produce antagonistic factors against Salmonella. Furthermore, in contrast to other Lactobacillus species that we tested – L. casei and L. paracasei, we found that L. delbrueckii subsp. bulgaricus was able to upregulate hilA and sipA genes in Salmonella. Several studies have observed the anti-Salmonella activity of Lactobacillus species. However, their activities are strain-specific (Golowczyc et al., 2007; Yang et al., 2014; Gómez et al., 2016). Furthermore, to our knowledge, this may be the first report describing that Salmonella can elicit a more potent antibacterial activity from Lactobacillus species in the cell-free culture supernatant (CFCS).

Our study's novel finding is Salmonella's ability to elicit an antagonistic activity from L. delbrueckii subsp. bulgaricus potentiating its anti-Salmonella activity (Figures 2 and 3). Although L. delbrueckii subsp. bulgaricus monoculture exhibited a natural or innate inhibitory activity against Salmonella enterica serovar Typhimurium, its coculture with Salmonella, either in the presence or absence of cell-to-cell contact, demonstrated a more potent antagonistic activity (Figures 1 and 2). The amelioration may have resulted from a direct cell-to-cell interaction (Figure 3) between the two species or the exchange of their metabolites (Figure 2). During the interaction, membrane-bound molecules or secreted compounds may trigger a cell signaling network that directs the expression of genes necessary for growth and survival. Two proposed mechanisms have been inferred: (1) the isolates, especially L. delbrueckii subsp. bulgaricus, sense cues from Salmonella enterica serovar Typhimurium, amplifying the production and secretion of the innately produced antimicrobial compounds, and (2) the signaling cues released by Salmonella enterica serovar Typhimurium promoted the expression of other biosynthetic gene clusters (BGCs) in L. delbrueckii subsp. bulgaricus, encoding a more potent antimicrobial compound that can either be bacteriostatic or bactericidal. Microbial interactions may induce the test bacteria to diversify their secreted metabolome or potentiate their secondary metabolite production. Our finding that Salmonella potentiates the isolates' antibacterial activity was similarly observed in our biological models of cell-cell interaction using diffusible molecules or direct cell contact. This phenomenon was demonstrated in microbial communities from similar soil habitats with 146 phylogenetically different bacteria. Their pairwise combination demonstrated 46% antimicrobial activity compared to 33% in monocultures. There was also interaction-mediated suppression of inhibitory activity in 22% of all combinations (Tyc et al., 2014). In species of Streptomyces, when Salmonella coelicolor interacted with other actinomycetes, each interaction triggered a unique secondary metabolite profile (Traxler et al., 2013). The displayed competitive interactions produced antimicrobial compounds only in the presence of competing species, the consequence of which is the inhibition of other cells. Our model of cell-to-cell interaction may also be observed in Pseudomonas aeruginosa. The production of its antimicrobial compound is enhanced in response to N-Acetylglucosamine peptidoglycan. This suggests that *P. aeruginosa* monitors other bacteria in its environment by recognizing exogenous peptidoglycan (Korgaonkar & Whiteley, 2011). There are also rare accounts of this competition-induced potentiated antimicrobial activity in probiotics. Tong et al. (2012) reported competition between the probiotic Lactococcus lactis and the dental plaque-inducing Streptococcus mutans. Diffusible molecules from the metabolites of Salmonella mutans enhanced the bacteriocin nisin expression in L. lactis, which resulted in the inhibition of the former (Tong et al., 2012). These studies may explain how Salmonella potentiated the antagonistic activity of the isolates, particularly L. delbrueckii subsp. bulgaricus.

Probiotic involvement in the modulation of gene expression in Salmonella has been previously studied (Das et al., 2013; Yang et al., 2014; Tanner et al., 2016), but little is known about the probiotics' transcriptome as they interact or when cocultured with enteric pathogens. Given that microbial interaction in nature is always complex, we inferred that Salmonella-Lactobacillus interaction does not only affect Salmonella. The consequences of their interaction are reciprocal, and the modulation of gene expression is bilateral. In our study, a direct relationship was observed between the increasing cell concentrations of Salmonella and the inhibitory activity of Lactobacillus delbrueckii subsp. bulgaricus (Figure 3). Additionally, the potentiated antibacterial activity of L. delbrueckii subsp. bulgaricus can be triggered in the absence of live cells of Salmonella. This suggests that the metabolites secreted during logarithmic and stationary phases of Salmonella growth can elicit antimicrobial activity. When bacteria interact, they may sense general cues of potential danger or specific threats from competitors; they employ distance-dependent danger sensing of volatile organic compounds, diffusible molecules, and direct contact (Westhoff et al., 2017).

As the three *Lactobacillus* isolates may use soluble factors to inhibit *Salmonella enterica* serovar Typhimurium, the *L. delbrueckii* subsp. *bulgaricus* isolate may use an additional species-specific mechanism that capacitates it to inhibit the growth of *Salmonella enterica* serovar Typhimurium at a greater magnitude than the other two isolates. In contrast to other *Lactobacillus* species tested in this study – *L. casei* and *L. paracasei, L. delbrueckii* subsp. *bulgaricus* upregulated *hilA* and *sipA* genes in *Salmonella* by 20-fold and 5-fold, respectively. We propose that the upregulation of key virulence genes might be another mechanism by which this isolate controls *Salmonella* growth (Figure 5).

The Salmonella pathogenicity island 1 (SPI-1) encodes several effector proteins necessary to invade the epithelial cells (Fabrega & Vila, 2013). The transcription factor encoded in SPI-1, the hilA gene, is responsible for controlling downstream genes in the SPI-1, which are necessary for the disruption and invasion of the gut barrier system (Bajaj et al., 1996; Fàbrega & Vila, 2013). It regulates the prg/org and inv/spa operons that encode the formation of invasion-associated type III secretion system (T3SS-1) (Ellermeier & Slauch, 2007; Fxbrega & Vila, 2013) and the sic/ sip operons that encode effector proteins, which impair the tight junctions responsible for intestinal barrier integrity (Boyle et al., 2006; Fàbrega & Vila, 2013). Importantly, hilA controls the gene sipA (Galan, 1996; Fxbrega & Vila, 2013), which encodes for a protein that mediates membrane ruffling of the host cell through actin binding, bundling, and polymerization leading to the phagocytosis of the Salmonella cells (Agbor & McCormick, 2011). Along with other genes in the Salmonella Pathogenicity Island-1, hilA and sipA have significant roles in Salmonella infection.

Reports have described how *Lactobacillus* spp. modulate SPI-1 genes to control *Salmonella*'s invasion of host epithelial cells by downregulating *hilA* and the downstream genes (De Keersmaecker *et al.*, 2005; Bayoumi & Griffiths, 2010; Yang *et al.*, 2014), but some reported otherwise. Tanner *et al.* (2016) explored the global transcription response of *Salmonella enterica* serovar Typhimurium N-15 as it interacts with *Bifidobacterium thermophilum* RBL6 in coculture. They found that many virulence genes in *Salmonella* N-15 were highly expressed, including the complete T3SS-1 genes and the T3SS-1 regulator, *hilA* (Tanner *et al.*, 2016). However, this would contradict many studies showing reduced invasion capacity of *Salmonella* as evident in the downregulation of the virulence genes (De Keersmaecker *et al.*, 2006; Bayoumi & Griffiths, 2010; Yang *et al.*, 2014).

So how can an increased virulence gene expression lead to reduced cell proliferation and infection rate? While the

virulence genes of Salmonella N-15 were highly expressed, its cell count was reduced upon coculture with Bifidobacterium RBL67 (Tanner et al., 2016). Similarly, when the L. delbrueckii subsp. bulgaricus isolate was cocultured with Salmonella enterica serovar Typhimurium indirectly, the *hilA* and *sipA* virulence genes of Salmonella were overexpressed. In a host-pathogen scenario, a subpopulation of Salmonella expresses T3SS-1 to trigger cell host invasion and pro-inflammatory response (Sturm et al., 2011; Diard et al., 2013). However, T3SS-1-expressing Salmonella (T⁺) cells are not involved in the invasion of host cells; they only lay the groundwork for an actual infection. T⁺ cells typically form 20-200 T3S apparatuses and approximately $3-10 \times 10^4$ effector proteins (Sturm et al., 2011), which is costly to cells; their growth becomes retarded, they become less fit, and they are easily killed (Ackermann et al., 2008; Sturm et al., 2011; Diard et al., 2013). Thus, they exhibit self-destructive cooperation to benefit other subpopulations of Salmonella (Ackermann et al., 2008; Diard et al., 2013).

Although this study did not explore the global transcriptome of Salmonella enterica serovar Typhimurium, we propose two possible scenarios underlying our results. First, the induction of hilA and sipA expression in Salmonella may lead to the formation of T⁺ cells. We hypothesize that as cells of Salmonella and L. delbrueckii subsp. bulgaricus interact in the experimental setup, the L. delbrueckii subsp. bulgaricus isolate induces the formation of T⁺ cells, which are less fit and easily killed by the soluble factors that L. delbrueckii subsp. bulgaricus produces. While the results of the coculture experiments might partially substantiate this premise, we do not discount other possibilities, including the survival of other pathogen subpopulations. Second, we note that the upregulation of hilA may significantly increase the gut epithelial lining invasion by the pathogen. This can be exploited as an evasion mechanism by Salmonella enterica serovar Typhimurium against the antimicrobial assault of L. delbrueckii subsp. bulgaricus. Therefore, further studies are needed to test these hypotheses to gain more insights into the impact of these microbial interactions in vivo.

CONCLUSION

The rise of antimicrobial resistance renders available antibiotics ineffective against infectious bacteria. At present, the diarrheal diseases caused by enteric pathogens need to be addressed by exploring alternative forms of management to address pathogens' antimicrobial resistance. Probiotic microorganisms produce antimicrobial substances that can be explored for therapeutic purposes. One mechanism by which probiotic microorganisms perform this is through the competitive exclusion of pathogens. In nature, microorganisms communicate and react by releasing signaling cues that can be antagonistic or synergistic, among others. In this study, we found that Salmonella could elicit the production of more potent antimicrobial factors from probiotic isolates in response to the presence of live cells of Salmonella or through its metabolites. These soluble factors can be capitalized as a Salmonella inhibitor, especially during a non-Typhoidal diarrheal disease.

Considering the probiotics' status as generally regarded as safe (GRAS), our findings have at least two potential applications. First is the enhancement of antimicrobial compound production by *Lactobacillus* spp. against *Salmonella* infection *in vitro*. The second application uses *Lactobacillus* spp. for innovative natural food processing and preservation strategies to control *Salmonella* contamination. It may reduce the risk of infection caused by ingesting contaminated food products.

Although the *in vitro* results for the potentiation of inhibitory activity of *L. delbrueckii* subsp. *bulgaricus* by *Salmonella* is promising, the translation of the experiment to an *in vivo* setting

warrants further investigations. Microbial interactions simulated in a laboratory setup differ significantly in an *in vivo* setting with more variables. Further research is needed to validate the efficacy of probiotic strains for infectious disease treatment. Therefore, we may prevent their adverse risk and maximize health and economic benefits by carefully investigating probiotic microorganisms' biological activities.

Importantly, our study provided valuable insights into how microbial interactions could be mined for elicitors of antimicrobial substances that may be tapped for improving their production. As we struggle to increase our arsenal of strategies for controlling infectious diseases, we believe our study paved a potential new avenue for enhancing antimicrobial production.

ACKNOWLEDGEMENT

This work was supported by the University of the Philippines Office of the Vice President for Academic Affairs Balik-PhD Grant (OVPAA-BPhD-2015-01), the Department of Science and Technology Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP), and the Emerging Interdisciplinary Discovery Research Program (EIDR-CO8-009.1) Joyce A. Ibana has received the research support from the University of the Philippines. We thank Dr. Demetrio L. Valle, Jr.† and Dr. Windell R. Rivera of the Pathogen-Host-Environment Interactions Research Laboratory, University of the Philippines, Diliman, for providing the microbial pathogens used in this study.

This work is dedicated to the late father of Michael Angelo Nicdao, Mr. Orencio "Orange" Vicente Nicdao.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

REFERENCES

- Abhisingha, M., Dumnil, J. & Pitaksutheepong, C. (2018). Selection of potential probiotic *Lactobacillus* with inhibitory activity against *Salmonella* and fecal coliform bacteria. *Probiotics and Antimicrobial Proteins* 10: 218-227. https://doi.org/10.1007/s12602-017-9304-8
- Ackermann, M., Stecher, B., Freed, N.E., Songhet, P., Hardt, W. & Doebeli, M. (2008). Self-destructive cooperation mediated by phenotypic noise. *Nature* **454**: 987-990. https://doi.org/10.1038/nature07067
- Agbor, T. & McCormick, B. (2011). *Salmonella* effectors: important players modulating host cell function during infection. *Cell Microbiology* **13**: 1858-1869. https://doi.org/10.1111/j.1462-5822.2011.01701.x
- Azanza, M.P.V., Membrebe, B.N.Q., Sanchez, R.G.R., Estilo, E.E.C., Dollete, U.G.M., Feliciano, R.J. & Garcia, N.K.A. (2019). Foodborne disease outbreaks in the Philippines (2005-2018). *Philippine Journal of Science* 148: 317-336.
- Bajaj, V., Lucas, R.L., Hwang, C. & Lee, C.A. (1996). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of *hilA* expression. *Molecular Microbiology* 22: 703-714.

https://doi.org/10.1046/j.1365-2958.1996.d01-1718.x

- Bayoumi, M.A. & Griffiths, M.W. (2010). Probiotics down-regulate genes in Salmonella enterica serovar Typhimurium pathogenicity islands 1 and 2. Journal of Food Protection 73: 452-460. https://doi.org/10.4315/0362-028x-73.3.452
- Boyle, E.C., Brown, N.F. & Finlay, B.B. (2006). Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2, and SipA disrupt tight junction structure and function. *Cellular Microbiology* **8**: 1946-1957. https://doi.org/10.1111/j.1462-5822.2006.00762.x
- Chen, C.C., Lai, C.C., Huang, H.L., Huang, W.Y., Toh, H.S., Weng, T.C., Chuang, Y.C., Lu, Y.C. & Tang, H.J. (2019). Antimicrobial activity of *Lactobacillus* species against Carbapenem-Resistant *Enterobacteriaceae. Frontiers in Microbiology* **10**: 789. https://doi.org/10.3389/fmicb.2019.00789

- Das, J.K., Mishra, D., Ray, P., Tripathy, P., Beuria, T.K., Singh, N. & Suar, M. (2013). *In vitro* evaluation of anti-infective activity of a *Lactobacillus plantarum* strain against *Salmonella enterica* serovar Enteritidis. *Gut Pathogens* 5: 11. https://doi.org/10.1186/1757-4749-5-11
- De Keersmaecker, S.C.J., Marchal, K., Verhoeven, T.L.A., Engelen, K., Vanderleyden, J. & Detweiler, C.S. (2005). Microarray analysis and motif detection reveal new targets of the *Salmonella enterica* serovar Typhimurium HilA regulatory protein, including *hilA* itself. *Journal of Bacteriology* 187: 4381-4391.
 - https://doi.org/10.1128/JB.187.13.4381-4391.2005
- De Keersmaecker, S.C.J., Verhoeven, T.L.A., Desair, J., Marchal, K., Vanderleyden, J. & Nagy, I. (2006). Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiology Letters 259: 89-96. https://doi.org/10.1111/j.1574-6968.2006.00250.x
- Diard, M., Garcia, V., Maier, L., Remus-emsermann, M.N.P., Regoes, R.R., Ackermann, M. & Hardt, W. (2013). Stabilization of cooperative virulence by the expression of an avirulent phenotype. *Nature* 494: 353-356. https://doi.org/10.1038/nature11913
- Djadouni, F. & Kihal, M. (2012). Antimicrobial activity of lactic acid bacteria and the spectrum of their biopeptides against spoiling germs in foods. *Brazilian Archives of Biology and Technology* **55**: 435-443. https://doi.org/https://doi.org/10.1590/S1516-89132012000300015 DOH. (2013). *The 2013 Philippine Health Statistics*.
- Ellermeier, J.R. & Slauch, J.M. (2007). Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Current Opinion in Microbiology **10**: 24-29. https://doi.org/10.1016/j.mib.2006.12.002
- Fàbrega, A. & Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clinical Microbiology Reviews 26: 308-341.

https://doi.org/10.1128/CMR.00066-12

- FAO/WHO. (2001). Health and nutrional properties of probiotics including powder milk with live lactic acid bacteria (pp.1-4). Food and Agriculture Organization of the United Nations.
- Galan, J.E. (1996). Molecular genetic bases of *Salmonella* entry into host cells. *Molecular Microbiology* **20**: 263-271.

https://doi.org/10.1111/j.1365-2958.1996.tb02615.x

- Goers, L., Freemont, P. & Polizzi, K.M. (2014). Coculture systems and technologies: taking synthetic biology to the next level. *Journal of The Royal Society Interface* 11: 1-13. https://doi.org/10.1098/rsif.2014.0065
- Golowczyc, M.A., Mobili, P., Garrote, G.L., Abraham, A.G, & De Antoni, G.L. (2007). Protective action of *Lactobacillus kefir* carrying S-layer protein against *Salmonella enterica* serovar Enteritidis. *International Journal* of Food Microbiology **118**: 264-273. https://doi.org/10.1016/j.ijfoodmicro.2007.07.042
- Gómez, N.C., Ramiro, J.M., Quecan, B.X. & de Melo Franco, B.D. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of *Listeria monocytogenes, Salmonella* Typhimurium, and *Escherichia coli* 0157:H7 biofilms formation. *Frontiers in Microbiology* 7: 863. https://doi.org/10.3389/fmicb.2016.00863
- Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S. et al.(2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term. *Nature Reviews Gastroenterology and Hepatology* **11**: 506-514. https://doi.org/10.1038/nrgastro.2014.66
- Holmberg, S.D., Osterholm, M.T., Senger, K.A. & Cohen, M.L. (1984). Drug-resistant Salmonella from animals fed antimicrobials. The New England Journal of Medicine 311: 617-622. https://doi.org/10.1056/nejm198409063111001
- Ishikawa, H., Kutsukake, E., Fukui, T., Sato, I., Kurihara, T., Okada, N., Danbara, H., Toba, M., Kohda, N., Maeda, Y. et al. (2010). Oral administration of heat-killed Lactobacillus plantarum strain b240 protected mice against Salmonella enterica serovar Typhimurium oral administration of heat-killed Lactobacillus plantarum. Bioscience, Biotechnology, and Biochemistry 74: 1338-1342. https://doi.org/10.1271/bbb.90871
- Kim, J., Son, J.H., Seo, H., Park, S., Paek, N. & Kim, S. (2004). Characterization of bacteriocin produced by *Lactobacillus bulgaricus*. *Journal of Microbiology and Biotechnology* 14: 503-508.

- Korgaonkar, A.K. & Whiteley, M. (2011). Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. Journal of Bacteriology 193: 909-917. https://doi.org/10.1128/JB.01175-10
- Makras, L. & De Vuyst, L. (2006). The *in vitro* inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. *International Dairy Journal* **16**: 1049-1057. https://doi.org/10.1016/j.idairyj.2005.09.006
- Newman, D.J. & Cragg, G.M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. *Journal* of Natural Products 83: 770-803.

https://doi.org/10.1021/acs.jnatprod.9b01285

Nguyen, C.T., Dhakal, D., Pham, V.T.T., Nguyen, H.T. & Sohng, J.K. (2020). Recent advances in strategies for activation and discovery/ characterization of cryptic biosynthetic gene clusters in *Streptomyces*. *Microorganisms* 8: 616.

https://doi.org/10.3390/microorganisms8040616

- Nicdao, M.A.C., Soriano, J.C.C., Rivera, W.L. & Ibana, J.A. (2020). The ciprofloxacin resistance of *Lactobacillus* species isolated from probiotic food products in the Philippines is due to mutations in *gyrB* and *parC* genes. *Philippine Science Letters* **13**: 14-23.
- Pham, J.V, Yilma, M.A., Feliz, A., Majid, M.T., Maffetone, N., Walker, J.R., Kim, E., Cho, H.J., Reynolds, J.M., Song, M.C. et al. (2019). A review of the microbial production of bioactive natural products and biologics. *Frontiers in Microbiology* **10**: 1404. https://doi.org/10.3389/fmicb.2019.01404
- Rutledge, P.J. & Challis, G.L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. *Nature Reviews Microbiology* 13: 509-523. https://doi.org/10.1038/nrmicro3496
- Sturm, A., Heinemann, M., Arnoldini, M., Benecke, A., Ackermann, M., Benz, M., Dormann, J. & Hardt, W. (2011). The cost of virulence/: retarded growth of *Salmonella* Typhimurium cells expressing type III secretion system 1. *PLOS Pathogens* 7: e1002143. https://doi.org/10.1371/journal.ppat.1002143
- Tanner, S.A., Chassard, C., Rigozzi, E., Lacroix, C. & Stevens, M.J.A. (2016). *Bifidobacterium thermophilum* RBL67 impacts on growth and virulence gene expression of *Salmonella enterica* subsp. *enterica* serovar Typhimurium. *BMC Microbiology* **16**: 46. https://doi.org/10.1186/s12866-016-0659-x

- Tong, Z., Zhou, L., Li, J., Kuang, R., Lin, Y. & Ni, L. (2012). An *in vitro* investigation of *Lactococcus lactis* antagonizing cariogenic bacterium *Streptococcus mutans*. *Archives of Oral Biology* **57**: 376-382. https://doi.org/10.1016/j.archoralbio.2011.10.003
- Traxler, M.F., Watrous, J.D., Alexandrov, T., Dorrestein, P.C. & Kolter, R. (2013). Interspecies interactions stimulate diversification of the *Streptomyces coelicolor* secreted metabolome. *MBio* 4: e00459-13. https://doi.org/10.1128/mBio.00459-13
- Tyc, O., van den Berg, M., Gerards, S., van Veen, J.A., Raaijmakers, J.M., De Boer, W. & Garbeva, P. (2014). Impact of interspecific interactions on antimicrobial activity among soil bacteria. *Frontiers in Microbiology* 5: 567. https://doi.org/10.3389/fmicb.2014.00567
- Velge, P., Cloekaert, A. & Barrow, P. (2005). Emergence of *Salmonella* epidemics: the problems related to *Salmonella enterica* serotype Enteritidis and multiple antibiotic resistance in other major serotypes. *Veterinary Research* **36**: 267-288.

https://doi.org/10.1051/vetres:2005005

- Ventola, C.L. (2015). The antibiotic resistance crisis: part 1: causes and threats. *Pharmacy and Therapeutics* **40**: 277-283.
- Westhoff, S., van Wezel, G.P. & Rozen, D.E. (2017). Distance-dependent danger responses in bacteria. *Current Opinion in Microbiology* 36: 95-101. https://doi.org/10.1016/j.mib.2017.02.002
- Yang, X., Brisbin, J., Yu, H., Wang, Q., Yin, F., Zhang, Y., Sabour, P., Sharif, S. & Gong, J. (2014). Selected lactic acid-producing bacterial isolates with the capacity to reduce *Salmonella* translocation and virulence gene expression in chickens. *PLOS ONE* **9**: e93022. https://doi.org/10.1371/journal.pone.0093022
- Yu, M., Li, Y., Banakar, S.P., Liu, L., Shao, C., Li, Z. & Wang, C. (2019). New metabolites from the co-culture of marine-derived actinomycete *Streptomyces rochei* MB037 and fungus *Rhinocladiella similis* 35. *Frontiers in Microbiology* 10: 915. https://doi.org/10.3389/fmicb.2019.00915
- Zhuang, H., Cheng, L., Wang, Y., Zhang, Y.K., Zhao, M.F., Liang, G.D., Zhang, M.C., Li, Y.G., Zhao, J.B., Gao, Y.N. *et al.* (2019). Dysbiosis of the gut microbiome in lung cancer. *Frontiers in Cellular and Infection Microbiology* 9: 112. https://doi.org/10.3389/fcimb.2019.00112