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Timely and rapid diagnosis is crucial for faster and proper malaria treatment planning. Microscopic 
examination is the gold standard for malaria diagnosis, where hundreds of millions of blood films 
are examined annually. However, this method’s effectiveness depends on the trained microscopist’s 
skills. With the increasing interest in applying deep learning in malaria diagnosis, this study aims to 
determine the most suitable deep-learning object detection architecture and their applicability to detect 
and distinguish red blood cells as either malaria-infected or non-infected cells. The object detectors 
Yolov4, Faster R-CNN, and SSD 300 are trained with images infected by all five malaria parasites and 
from four stages of infection with 80/20 train and test data partition. The performance of object 
detectors is evaluated, and hyperparameters are optimized to select the best-performing model. The 
best-performing model was also assessed with an independent dataset to verify the models’ ability 
to generalize in different domains. The results show that upon training, the Yolov4 model achieves a 
precision of 83%, recall of 95%, F1-score of 89%, and mean average precision of 93.87% at a threshold 
of 0.5. Conclusively, Yolov4 can act as an alternative in detecting the infected cells from whole thin 
blood smear images. Object detectors can complement a deep learning classification model in detecting 
infected cells since they eliminate the need to train on single-cell images and have been demonstrated 
to be more feasible for a different target domain.
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INTRODUCTION

Malaria is a severe and occasionally fatal disease caused by 
a Plasmodium parasite that commonly infects the Anopheles 
mosquito, which feeds on human blood. World Health Organization 
(WHO) has been committed to malaria eradication since 1955. 
However, in 2020 alone, 241 million cases and 627,000 deaths 
were recorded. According to the World malaria report for 2021, the 
number of reported malaria cases remained the same for 2000 and 
2020. This demonstrates that malaria remains a serious global health 
issue 67 years after the eradication pledge. As one of the tropical 
countries, Malaysia is also affected by this disease. During the past 
decade, the incidence of zoonotic P. knowlesi cases in Southeast Asia 
has been increasing, with Malaysia reporting the highest number 
of infections (WHO, 2021a). Based on WHO (2021b) harnessing 
innovation and expanding research is one of the supporting elements 
in the fight against malaria. Substantial research and development 
to create new tools and strategies in medicines, diagnostics, vector 
control, and vaccines can contribute to malaria elimination and, 
eventually, its global eradication.

	 Microscopic examination remains the gold standard for malaria 
diagnosis. The results of the examination highly depend on the 
microscopist’s interpretation. Diagnosing the disease is challenging 
in non-endemic countries as the disease is rarely seen, and expertise 
in malaria diagnosis needs to be better maintained. However, in 
malaria-endemic countries, a lack of resources is a significant barrier 
to reliable and timely diagnosis of diseases (Tangpukdee et al., 2009; 
Capela et al., 2019). Therefore, alternate use of artificial intelligence 
for decision-making can play a crucial role in facilitating the rapid 
detection and prompt diagnosis of diseases. 
	 With current advances, deep learning, a subset of artificial 
intelligence (AI), plays a prominent role in healthcare by improving 
the reliability and efficiency of diagnosis and treatment across 
various specializations (Ahuja, 2019). In previous studies, different 
deep-learning methods have been applied to malaria diagnosis. A 
Convolutional Neural Network (CNN) is a type of artificial neural 
network mainly used in image recognition and processing and is 
famously used to detect and classify infected cells. However, one 
main challenge in applying deep learning in malaria diagnosis is 
the need for a comprehensive dataset. To learn the infected cells’ 
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features, single-cell images are needed to train the CNN classification 
model. However, they usually exist in a whole blood smear image 
with other cells, such as healthy red blood cells (RBC), white blood 
cells, etc. In previous works, traditional segmentation methods 
have been used to segment the cells of interest. Liang et al. (2016) 
used active contour to segment the cells, while Dong et al. (2017) 
segmented cells using thresholding techniques and morphological 
operations. Both rely on Hough Circle transform for their cell 
separation. Rajaraman et al. (2019) applied a level-set algorithm for 
RBC segmentation. Morphological operations for cell segmentation 
have been widely reported (Dong et al., 2017; Gopakumar et al., 
2018; Molina et al., 2021; Arshad et al., 2022). Furthermore, in 
several recent studies, readily segmented single-cell images from 
the National Library of Medicine were used to binary classify cells 
as infected or non-infected using deep learning models (Kassim et 
al., 2021; Maqsood et al., 2021; Imran et al., 2022). 
	 Several researchers have employed object detection algorithms, 
including Zhao et al. (2020), who used a deep learning object 
detection algorithm known as SSD300 to detect all the infected 
and non-infected red blood cells from thin blood smear images. 
On thin blood smear images, the effectiveness of object detection 
algorithms such as Faster R-CNN (Hung et al., 2017), Yolov2 (Yang 
et al., 2020) and SSD300 (Zhao et al., 2020), Mask R-CNN (Loh et 
al., 2021), have been evaluated. Besides these architectures, Yolov4 
was mainly used in previous studies to detect malaria parasites 
from thick blood smear images (Abdurahman et al., 2021; Koirala 
et al., 2022). The modified Yolov4 model achieved a higher mean 
average precision of 96.32% than Faster R-CNN and SSD in detecting 
infected cells in thick blood smear images (Abdurahman et al., 2021), 
but their performance is yet to be compared on thin blood smear 
images. So far, to our knowledge, only one study has experimented 
with and compared the performance of scaled Yolov4 and Yolov5 on 
malaria thin blood smear images for the detection and classification 
of malarial cells according to their parasite (Krishnadas et al., 2022). 
Based on their experiment, the performance of scaled Yolov4 
surpasses the performance of Yolov5. There is limited research on 
the application of Yolov4 for the detection of malarial infected cells. 
However, the application of Yolov4 was recently studied on other 
blood smear images with satisfying results, such as for blast cell 
detection for acute lymphoblastic leukaemia diagnosis (Khandekar 
et al., 2021; Akalin & Yumu÷ak, 2022).
	 In this study, we aim to develop an end-to-end identification 
and localization of the malaria-infected cells using a deep learning 
approach. Object detectors have an advantage in classifying and 
localizing objects. They can be trained to recognize the specific 
morphological characteristic of the infected cells using full blood 
smear images rather than single-cell images. Despite being trained 
on the entire blood smear images, the model will recognise which 
features to be learnt since, in the training images, the bounding 
boxes must be drawn on the objects of interest. Following that, 
during prediction, an object detector can identify the location of 
the detected cells (i.e., the coordinates of the detected cells). With 
the detected localised coordinates, it is possible to do automated 
cropping and processing of the single-cell image. Overall, an object 
detector reduces the need to generate single-cell images and permits 
the generation of single-bounded cell images for other classification 
applications. This technology will increase the viability of end-to-end 
deep-learning malaria diagnosis. 
	 In this study, several deep-learning object detectors are 
evaluated to determine the best-performing object detector in 
distinguishing and detecting only infectious cells from thin blood 
smear images. In contrast to the prior research, the images used in 
this study reflect infections caused by all malaria species at various 
stages of infection. This study aims to explore the capability of object 
detection architecture in recognizing the infected cells regardless of 
morphological differences between species and the infection phases. 
In addition, a specific algorithm will be integrated into the final 

model to automatically locate, crop, and create single-cell images 
of the detections. The crop-infected cells can be employed in future 
applications as an input to the second stage of the classification 
model in identifying the malaria species or the infection stages.

MATERIALS AND METHOD

In this study, the object detector algorithms are trained to determine 
the infected cells from the whole thin blood smear images. The 
idea of implementing object detectors is to automatically localize 
the objects of interest with minimal human intervention. Figure 1 
shows the overview of the proposed object detection algorithm 
conducted in this study. The three object detectors trained for this 
problem are Yolov4, Faster R-CNN and SSD-300.

Figure 1. Overall research methodology.

Object detection architecture
Faster Region-based Convolutional Neural Network (Faster R-CNN)
Faster R-CNN is a two-stage object detector introduced by Ren et al. 
(2015). It consists of two stages: the region proposal stage for object 
localization and the detector layer to assign labels to these objects. 
It is known as a two-stage detector, as the architecture first extracts 
the features from the images and then calculates the probability of 
the region containing the object. In Faster R-CNN, the image input 
is sent to the region proposal network (RPN). In the RPN, proposals 
are created in the input images. Region proposals are the parts 
that likely contain the object of interest. First, the features from 
the images are extracted, and feature maps are created to create 
region proposals. Once the feature maps are obtained, anchor boxes, 
as shown in Figure 2b, are placed all over the feature map. The 
anchor boxes represent where the RPN will search for the objects 
of interest. Finally, the RPN eliminates the anchor boxes that have 
lesser than a certain threshold of intersection over union (IoU) with 
the ground truth annotation (Figure 2a). If the intersection is high, 
the anchor box likely contains the object and is kept; otherwise, it 
is discarded. At the end of RPN, only a few anchor boxes are used 
as region proposals. 
	 In the region of interest (ROI) pooling, the feature maps and 
the region proposals are fed into the fully connected layers. In ROI 
pooling, fully connected layers are used to reduce the feature maps 
to the same size, as they are all in different sizes. The output of the 
ROI pooling is fed into two other fully connected layers and a softmax 
(classifier) which classifies the region proposals. At the same time, 
the regressor refines the location and dimension of the bounding 
boxes to increase localization accuracy. 

Single Shot Multibox Detector (SSD)
As compared to the Faster R-CNN, SSD has no region proposals 
networks. It predicts the boundary boxes and the classes of the 
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objects directly from feature maps in a single pass. Single Shot 
detector (SSD) consists mainly of extracting feature maps and 
applying a convolutional filter for object detection. Upon image 
input, a convolutional neural network such as VGG-16 is used as 
the backbone for feature extraction and Conv layers for object 
detection. In SSD, multi boxes of different sizes, like anchor boxes 
in Faster R-CNN, are created across the image. A total of 8732 boxes 
will be created to find the default box that overlaps the most with 
the ground truth bounding boxes containing the object.
	 During training, a matching strategy is used to match the 
default boxes over aspect ratio, location, and scale to the ground 
truth boxes. The boxes with the highest overlap with the ground 
truth over a certain threshold are selected. Sometimes there is 
more than one overlapping box on the ground truth. Therefore, 
non-max suppression is conducted where the predicted box with 
the maximum overlap is chosen as the final object location. 

You Only Look Once, version 4 (Yolov4)
You Only Look Once (Yolo) is a single-stage object detector as SSD. 
The main improvement in Yolo is the integration of object detection 
and classification in a single pass. Yolo does not perform feature 
extraction and region separately; instead, it executes them in a single 
pass. The approach of Yolov4 for bounding box regression sets it 
apart from the other object detection architectures. The detection 
of the object consists mainly of grid-cell, bounding box, and IoU. 
During training, the input image is divided into grid cells SxS. The 
model predicts N bounding boxes in every cell to search if the cell 
contains the centre point of the object of interest based on the 
ground truth box. When more than one bounding box contains the 
centre point, the model applies IoU overlap (Figure 2a) to determine 
and keep only the boxes exceeding a certain threshold. If there is 
more than one bounding box with IoU more than the threshold, 
non-max suppression is used to select the box with the maximum 
overlap with the ground truth.

Figure 2. Bounding box selection using intersection over union (IoU)(a), Overview of model predictions Faster R-CNN(b), SSD300(c), Yolov4(d).
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Data acquisition
This study used 446 thin blood smear images (examples as shown 
in Figure 3). The images were acquired from the publicly available 
dataset MP-IDB (https://github.com/andrealoddo/MP-IDB-The-
Malaria-Parasite-Image-Database-for-Image-Processing-and-
Analysis). Besides that, archived thin blood films of malaria infections 
from Kapit Hospital, Sarawak was obtained from previous studies 
(Daneshvar et al., 2010; Divis et al., 2015, 2018; Hu et al., 2021; Yunos 
et al., 2022). These blood films were fixed with absolute ethanol 
(BDH, England) for 10 seconds and stained with 10% Giemsa (BDH, 
England) in Gurrâ buffered water, pH 7.2 (BDH, England). Blood films 
were examined using a light microscope (Olympus model BX53) at 
x 1,000 magnification with immersion oil, and images were taken 
using the Cell^B software version 3 (Olympus). The images obtained 
are infected by all malaria parasites from various stages of infection. 
There is a total of 3038 parasitic cells annotated from all the images. 
For the images from the MP-IDB database, every image has its 
ground truth of infected cells in the form of a binary mask, and 
every file name indicates the stages of infection. The ground truth 
helps identify the infected cells’ location in every image (Figure 3).

Data Preparation
The main data preparation step done on the dataset was image 
augmentation. Augmentation is done to generate and increase the 
amount of the training images from the existing ones, such as by 

rotating the image and shifting and flipping the image horizontally 
and vertically. Data augmentation can only be done on images kept to 
train the model and not on the test images. Augmenting the training 
images provides more data to train the model and improves the 
model’s accuracy by enhancing its ability to recognize new variants 
of the training data. 
	 The object detectors perform their data augmentations. Such as 
one primary augmentation conducted by the Yolov4 model is mosaic 
data augmentation, where the training images are combined into 
a certain ratio, Faster RCNN performs random flips, and SSD 300 
performs random crop. Besides these augmentations, a separate 
geometric augmentation was performed on the training images. 
As shown in Figure 4, the MP-IDB dataset is used to train and test 
the model, whereas the dataset from Kapit Hospital, Sarawak, is 
used to cross-validate the model’s performance. As shown in Table 
1, firstly, the 210 images from MP-IDB dataset are split into training 
and testing images. From the dataset, 80% of the images are used to 
train the model and 20% to test the model’s performance. The train 
images are then divided according to parasite and stages of infection. 
The augmentation was done to achieve an equal number of images 
in all phases of the infection of parasites. Upon augmentation, 1000 
training images were obtained (Figure 5). Besides that, the 236 
images from Kapit Hospital, Sarawak were used to cross-validate 
the performance of the object detector.

Figure 3. Examples of thin blood smears, red circles enclose the parasites(a) Example of image and its ground truth from the public dataset(b).

Figure 4. Overview of data preparation.
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	 Upon image augmentation, the train and test images were 
annotated using LabelImg. As shown in Figure 6, bounding boxes 
are manually drawn around the infected cells for all images. The 
bounding boxes provide the minimum and maximum x and y 
coordinates (xmin, ymin,xmax,ymax) where the objects of interest 
are located for the model to learn their features. Besides drawing 

the bounding boxes, the infected cells are labelled under the same 
class despite their parasite and stage of infection. For Yolov4, the 
bounding boxes’ coordinates are saved in Yolo format, whereas 
coordinates for Faster R-CNN and SSD300 are saved in XML format. 
These files with the coordinates of the bounding boxes will be used 
throughout the training and testing of the models.

Figure 5.  Examples of images before and after augmentations.

Table 1. Data distribution for training and testing the model

			                                                            Training images		  Testing images
Database		  Total images before

	 Training images before	 Training images after	 No
		

augmentation
	 augmentation 	 augmentation	 augmentation

MP-IDB		  210	 168	 1000	 42
Kapit Hospital, Sarawak	 236	 –	 –	 236
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Figure 6. Annotation of infected cell in labelImg(a), Example of XML file created upon annotation with coordinates of bounding boxes(b).

Model Implementation 
A custom model configuration of Yolov4, Faster RCNN, and SSD300 
was performed according to the number of classes to be detected. 
In this study, the predictive model of binary classes of “infected 
cells” and “non-infected cells” are constructed, and experiments 
were conducted in Google Colab. The models were trained with 
80% of the original MP-IDB dataset augmented and tested with 
20% of the dataset. 
	 For Yolov4, a learning rate of 0.01 and 0.001 was used to 
train the model. The training of the Yolov4 model was conducted 
twice at a learning rate of 0.001. Firstly, it was conducted with 
distortion as one of the augmentation methods. Next, the training 
was undertaken again after evaluating the results and making a 

few changes to the augmentation and annotation of the images 
to improve the model’s prediction. The distortion augmentation 
method was eliminated, and the cells blurred or cut off in the 
training images were not included in the annotation. For training 
Faster R-CNN, models with different backbones are selected, such 
as Inceptionv2 and Resnet-50. Inceptionv2 and Resnet-50 are 
convolutional neural networks with different architectures and act as 
feature extractors to create feature maps in Faster R-CNN. Similarly, 
SSD-300 with MobileNetv2 backbone was trained. Faster R-CNN 
Inceptionv2, Resnet-50, and SSD300 models were first trained with 
their default learning rate of 0.0002,0.0003,0.0003, respectively, 
followed by the optimization process with a learning rate of 0.001 
as tabulated in Table 2.
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Performance Evaluation and best model selection
The results were evaluated with four performance metrics, namely 
recall rate, precision, F1-score, and mean average precision (mAP). 
The performance metric of the model depends on the IoU threshold 
allocated for predictions. In this study, an IoU threshold of 0.5 was 
set. If the bounding boxes predicted by the model overlap with the 
ground truths for more than a threshold of 0.5, the predictions are 
considered true positives; otherwise, they are false positives (Figure 
7). The IoU determines the true and false positive predictions; with 
this, we get the precision and recall rate of the model. Precision is the 
intolerance of the model towards false positives (1), The recall rate 
represents the intolerance of the models towards false negatives (2), 
and the F1-score (3) is the harmonic mean of recall and precision. 
F1-score gives equal weight to recall and precision. Mean average 
precision (4) is the typical metric used to compare the performances 
of object detectors. It is the mean of the average precision of all the 
classes detected by the object detection model. The model with the 
highest mAP is chosen as the best-performing model.

Cross-dataset validation and Optimal IoU determination
Upon selecting the best-performing model, cross-dataset validation 
of the model was performed on an independent dataset from 
Kapit Hospital, Sarawak. Cross-dataset validation tests the model’s 
generalizability on an independent dataset acquired under different 
staining conditions. A total of 236 images containing all malaria 

parasites were used to cross-test the model’s performance, and 
the model’s performance was recorded. Besides that, the model’s 
performance was further evaluated at different IoU thresholds 
besides 0.5, such as at 0.3 and 0.7, to determine the optimal IoU 
threshold for this problem.

Automated localization algorithm
In yolov4, localization and labelling of classes are done during 
predictions. In this study, we integrated a separate algorithm 
to automatically crop and save the predictions by the model to 
obtain single-cell images. The final best model was first saved as 
a TensorFlow model to achieve automatic cropping. Upon that, 
a separate function file is created to crop the detections. The 
function file performs the cropping by reading the coordinates of 
every bounding box (left_x, top_y, width, and height) predicted by 
the model on an image and saves each predicted cell separately 
(Figure 8).

RESULTS

Performance metric of object detectors
From Table 3, the Yolov4 training was conducted twice with a 
learning rate of 0.001. Firstly, it obtained a mAP of 89.93% (Model 1) 
with distortion as one of the augmentation methods and achieved a 
mAP of 93.87% (Model 2) upon excluding distortion augmentation. 
The main performance metric used to compare the model’s 
performances is Mean average precision(mAP).
	 Yolov4 model 2, with a learning rate of 0.001, gives the 
highest mAP at the IoU threshold of 0.5 (Table 3). The predictions 
were compared from before (Model 1) and after (Model 2) few 
adjustments were made in the training images’ labelling and 
augmentation methods. From the comparison, a few of the true 
positive cells not detected by model 1 were caught by model 2. 
Therefore, the Yolov4 model 2 with the highest mAP is chosen as 
the best-performing model.

Table 2. Hyperparameters setting of object detectors

Parameter	 Yolov4	 Faster R-CNN Inception-v2	 Faster R-CNN Resnet-50	 SSD-Mobilenetv2

Learning rate	 0.001	 0.001	 0.001	 0.001
	 0.01	 0.0002	 0.0003	 0.0003
Batch size	 32	 32	 32	 32
Input image size	 416x416	 600x1024	 600x1024	 300x300
IOU threshold	 0.5	 0.5	 0.5	 0.5

Figure 7. Infected cells prediction strategy using IoU threshold.
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Figure 8. Overview of the automated cropping of cells.

Table 3. Mean average precision (%) obtained by object detector 
models on test images from the source domain

Object detectors		  Learning rate	 mAP(%)

		  0.01	 88.18
Yolov4	 Model 1	 0.001	 89.93
	 Model 2	 0.001	 93.87

Faster R-CNN InceptionV2	 0.0002	 67.3
		  0.001	 76.7

Faster R-CNN Resnet50	 0.0003	 43.8
		  0.001	 66.7

SSD300 MobileNetV2		 0.0003	 69.3
		  0.001	 63.9

Table 4. Performance metric of Yolov4 model 2

Epoch	 Precision (%)	 Recall (%)	 F1-score (%)	 mAP (%)

1000	 74.00	 92.00	 82.00	 89.08
2000	 82.00	 93.00	 88.00	 92.08
3000	 85.00	 87.00	 86.00	 87.63
4000	 83.00	 95.00	 89.00	 93.87

Performance analysis and cross-validation of best performing 
Yolov4 model
The yolov4 model achieved the highest mAP of 93.87% at an IoU 
threshold of 0.5. Table 4 shows the performance metric of Yolov4 
model 2; epochs are the number of iterations the training data are 
passed through the model during training. The mAP is derived from 
the precision and recall rate of the model. When the precision value 
is higher, the model is more confident when classifying an object as 
positive. Whereas the recall rate is higher, more objects are classified 
correctly as positive as the model recalls the features better. For 
this problem, the model with a higher recall rate is preferred to flag 
as many infected cells as possible. Since both precision and recall 
are important, the precision-recall curve gives a better trade-off 
between these two metrics to select the threshold that maximizes 
both metrics. However, a more convenient way is to evaluate the 
F1-score of the model. The higher the F1- score, the higher the 
balance between the model’s precision and recall rate. From Table 4, 
the highest recall rate achieved by the model is 95% at 4000 epochs. 
However, the precision decreases from 85 to 83%, yet the model 
achieved the highest F1-score of 89%, showing a balance between 
precision and recall.
	 The performance of the best-performing Yolov4 model was 
evaluated with an independent dataset. Table 5 shows the confusion 
matrix obtained on the source and target domains containing the 
predictions’ true positive, false positive and false negative. The 
source domain indicates the datasets used to train and test the 
model, and the target domain indicates the independent dataset 
used to cross-validate the model. Initially, the model’s performance 
on the source and target dataset was evaluated at an IoU threshold 
of 0.5 to ensure a balance in predictions with not too many false 
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Figure 9. Examples of predictions of Yolov4 model 2 in ring(a)Trophozoite(b), schizont(c) and gametocyte(d) stages of 
infection, Examples of false positives results predicted by the Yolov4 model 2(e,f,g,h).
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positives and false negatives values. The predictions were then 
evaluated at different IoU threshold values to determine the optimal 
IoU threshold for detecting the infected cells. During the experiment, 
it was determined that the Yolov4 model achieved the highest mAP, 
recall rate, and true positives prediction on the malaria dataset with 
an IoU threshold of 0.3. From Table 4, more true positive infected 
cells are correctly detected at IoU threshold 0.3, contributing to a 
higher recall rate and mAP.

DISCUSSION

This study uses deep learning algorithms as object detectors to 
detect infected cells from thin blood smear images. The images that 
are infected with malaria parasites from various infection stages 
are used in this study to measure the capability of each model in 
detecting infected cells despite their morphological differences. 
The images were augmented in the training stage so that there was 
the same number of images infected by all parasites and stages of 
infection. This is to reduce the model’s bias towards a certain parasite 
or stage of infection.
	 Initially, the Yolov4 model 1 obtained a mAP of 89.93%. This 
was achieved when the model was trained with the augmented 
dataset. However, one of the augmentation methods used was 
distortion. After evaluating the results, the distortion augmentation 
was eliminated to not further complicate the learning process of the 
model as there is already no other pre-processing of images, such 
as noise removal. Besides that, on the training images, the cells 
that are blurred or cut off from the images were not included in the 
annotation to facilitate the cell features learning by the model. The 
model’s performance (model 2) improved to 93.87%, as shown in 
Table 3. 
	 Yolov4 outperforms Faster R-CNN and SSD 300 in detecting 
the infected red blood cells, as shown in Table 3. According to 
the previous studies, it can be concluded that there is no superior 
object detector, as their effectiveness changes based on the type 
of detection problem and dataset. The SSD300 Mobilenet is a short 
architecture notable for its accuracy-to-speed ratio. However, the 
model needs help producing an accurate mAP for the malaria 
dataset. The degree of accuracy of SSD300 may have been reduced 
compared to Faster R-CNN as it needed to identify small objects, 
mainly cells from the ring stage of infection. Although the test images 
contain the same number of images for each stage of infection, 
typically, there are more infected cells in the ring stage in a single 

blood smear image which can impact the model’s performance. 
Previous studies indicate that Faster R-CNN performs relatively 
better in multi-class than single-class classification (Hung et al., 
2017). Faster R-CNN with Inceptionv2 as a feature extractor gives 
better mAP than Resnet 50. Faster R-CNN inceptionv2 is deeper than 
Faster RCNN Resnet50; however, from the results deeper network 
should not perform worse than a shallow network given proper 
optimization. With a change to the learning rate of Inceptionv2, its 
performance was significantly enhanced. 
	 In previous studies, Yolov4 was mostly employed to identify 
infected cells in thick blood smear images. Meanwhile, this study 
concluded that Yolov4 could efficiently execute regression and 
classification on images of thin blood smear cells. As depicted in 
Figure 9, although distinct morphologies from different stages of 
infected malaria, the proposed Yolov4 can recognize them. Given 
the importance of finding infected cells, the recall rate attained 
by the model to identify as many infected or true positive cells as 
feasible is given greater weight. Consequently, the performance of 
the model was also assessed at varying thresholds. Although the 
model initially produces a reasonable result with an IoU threshold 
of 0.5, it was discovered that with an IoU threshold of 0.3, the model 
could identify more true positive cells and has a higher recall rate. 
	 Although few measures were taken during the training to reduce 
the model’s bias, it is crucial to perform cross-data validation to 
observe the model’s performance and robustness on a dataset from 
a different domain. In most previous studies, cross-dataset validation 
of the deep learning models is not performed. Consequently, these 
questions the model’s robustness on an independent dataset. 
Among the few studies that performed cross-dataset validation, 
Zhao et al. (2020) and Rahman et al. (2021) reported a decrease 
in models’ classification performance upon testing. The results of 
the classification model on an independent dataset show that it is 
difficult to directly apply models trained on the source domain to 
the target domain when they differ excessively (Loddo et al., 2022). 
	 In previous studies, the object detectors were not cross-
validated in an independent malaria dataset. In this study, the Yolov4 
model was validated with an independent dataset and achieved 
a mAP of 84.04% at the optimal threshold. From Figure 9 (e, f, g, 
h), the model mainly mistakes small materials or faint stains and 
smears as infected cells leading to false positives. Besides that, in 
some infections, there are typically an average of 3 or more cells 
in a single blood smear image, mainly in the ring, schizont, and 
trophozoites stages of P. falciparum infection. However, based on 
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the predictions, the model can still have at least predicted two 
infected cells correctly in a single blood smear image, flagging that 
the person is infected. As mentioned earlier, for this problem, false 
positives are more acceptable compared to false negatives to flag 
as many infected cells as possible. The performance of the Yolov4 
object detector shows that it is feasible to be used on a cross-dataset 
without fine-tuning. As for future applications, the cropped cells 
can facilitate further applications of deep learning in mobile malaria 
diagnoses, such as classifying the cells according to the species 
that causes the infection, as shown in the proposed framework in 
Figure 10.

CONCLUSION

This study investigated the capability of deep learning object 
detectors such as Yolov4, Faster R-CNN, and SSD300 to detect the 
infected cells from various malaria species and stages of infection 
from thin blood smear images. The Yolov4 model outperforms 
the other object detectors on the malaria dataset, and several 
experiments were conducted to determine the optimal IoU 
threshold for the malaria dataset. The model’s robustness was tested 
with cross-dataset validation. This was done to test the feasibility of 
the model trained on the source domain on an independent dataset 
without fine-tuning. Deep-learning object detectors can act as an 
alternative to deep-learning classification models in determining 
infected cells from thin blood smear images more effectively, 
eliminating the need for single-cell images. Furthermore, the best-
performing object detection architecture was integrated with a 
separate algorithm to crop the cells detected to create single-cell 
images. These single-cell images can facilitate further applications 
of deep learning in malaria diagnosis, such as for classification 
according to species or stages of infection. 
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