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The pathogenesis of chronic parasitic central nervous system (CNS) infections, including granulomatous
amoebic meningoencephalitis (GAE), cerebral toxoplasmosis (CT), and neurocysticercosis (NCC), is
primarily due to an inflammatory host reaction to the parasite. Inflammatory cytokines produced by
invading T cells, monocytes, and CNS resident cells lead to neuroinflammation which underlie the
immunopathology of these infections. Immune molecules, especially cytokines, can therefore emerge
as potential biomarker(s) of CNS parasitic infections. In this study, cerebral spinal fluid (CSF) samples
from suspected patients with parasitic infections were screened for pathogenic free-living amoebae by
culture (n=2506) and PCR (n=275). Six proinflammatory cytokines in smear and culture-negative CSF
samples from patients with GAE (n = 2), NCC (n = 7), and CT (n = 23) as well as control (n = 7) patients
were measured using the Multiplex Suspension assay. None of the CSF samples tested was positive for
neurotropic free-living amoebae by culture and only two samples showed Acanthamoeba 18S rRNA by
PCR. Of the six cytokines measured, only IL-6 and IL-8 were significantly increased in all three infection
groups compared to the control group. In addition, TNFa levels were higher in the GAE and NCC groups
and IL-17 in the GAE group compared to controls. The levels of IL-13 and IFNy were very low in all the
infection groups and the control group. There was a correlation between CSF cellularity and increased
levels of IL-6, IL-8, and TNFa in 11 patients. Thus, quantifying inflammatory cytokine levels in CSF might
help with understanding the level of neuroinflammation in patients with neurotropic parasitic diseases.
Further studies with clinico-microbiological correlation in the form of reduction of cytokine levels with
treatment and the correlation with neurological deficits are needed.

Keywords: Cytokines; multiplex suspension assay; Granulomatous amoebic encephalitis;
Neurocysticercosis; Cerebral toxoplasmosis.

INTRODUCTION

Chronic parasitic central nervous system (CNS) infections such
as granulomatous amoebic meningoencephalitis (GAE), cerebral
toxoplasmosis (CT), and neurocysticercosis (NCC), continue to be
a health problem, particularly in developing countries (Prandota,
2010; Del Brutto & Garcia, 2021; Raju et al., 2022). The persistence
of inflammatory processes in GAE and CT, or loss of active immune
suppression in NCC, results in parenchymal tissue damage, with
severe neurological consequences (Mishra et al., 2009; Kot et
al., 2021). The pathogenesis of these diseases is primarily due
to an inflammatory host reaction to the parasite, resulting in
symptoms such as headache, migraine, nausea, vomiting, fever,
intracranial hypertension, hydrocephalus, ischemia, epileptic
seizures, schizophrenia, stroke, focal neurologic deficits, and altered
sensorium, in addition to physical obstruction of the flow of cerebral
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spinal fluid (CSF) (Prandota, 2010; Del Brutto et al., 2016; Kot et
al., 2021).

Prior exposure to Acanthamoeba antigens and the inability
of macrophages to phagocytize larger trophozoites result in a
hypersensitivity reaction that develops into a granulomatous
inflammatory lesion with epithelioid cells and pathogenic T cells that
may cause substantial tissue destruction in GAE (Baig et al., 2015;
Kot et al., 2021). In NCC, the Taenia solium larva in its vesicular stage
lives for several years by blocking the complement system, increasing
regulatory T cells, and degrading immunoglobulins, resulting in an
anti-inflammatory phase that is asymptomatic (Del Brutto et al.,
2016). The destruction of larvae by therapeutic treatment or by
natural degeneration causes acute or subacute inflammation to
colloidal and granular stages or a chronic inflammatory response
to the calcified parasite, which is responsible for the severe
neuropathology (Garcia et al., 2020). Toxoplasma gondii establishes
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intracellular cysts in the brain in almost one third of the world’s
population and is asymptomatic in healthy adults (Carruthers &
Suzuki, 2007). An imbalance between proinflammatory and anti-
inflammatory cytokines, the administration of drugs for some
diseases, or decreased T cell influx into the CNS due to AIDS or
chemotherapy may result in the reactivation of latent CT and the
development of toxoplasma encephalitis (TE), which is characterized
by cyst rupture, tachyzoite conversion, and parasite replication
within the CNS (Prandota, 2010).

Neuroinflammation during infection is driven by cytokines
produced by invading T cells and monocytes, resident astrocytes,
and microglia (Becher et al., 2017). Pro-inflammatory cytokines such
as IL-1B, IL-6, IL-8, and TNFa are primarily produced by monocytes/
macrophages but also by other cells. IFNy is produced by activated
T cells, and IL-17A is produced by a subset of CD4 cells called T
helper 17 (Th17) cells (Borish & Steinke, 2003; Becher et al., 2017).
In addition to their unique functions in cellular influx and leucocyte
activation for pathogen clearance, these inflammatory cytokines
secreted locally in the inflamed CNS act on T cells and macrophages
to maintain their pathogenic properties in the presence of parasitic
antigens and counteract the natural tendency for resolution of the
immune response (Becher et al., 2017). Increased levels of some of
the cytokines were shown to be an indicator of neuroinflammation
and long-term neurologic and cognitive impairment; hence,
quantifying them in the CSF of patients with GAE, NCC, and CT
can provide valuable information about patients” immune status
(Shabani et al., 2017; Cuff et al., 2020). Currently, there are no
published reports on CNS proinflammatory cytokine profiles in
patients with GAE and only few reports exist on CSF cytokine profiles
in patients with NCCand CT (Kashyap et al., 2012; Verma et al., 2011).
In this study, the levels of six proinflammatory cytokines (IL-1f3,
IL-6, IL-8, IL17A, IFNy and TNFa) that are considered important in
neurotropic parasitic diseases were measured in smear and culture-
negative CSF samples from patients with GAE, NCC, and CT using
the Multiplex Suspension assay which has the capacity to detect
and quantify multiple cytokines simultaneously in the same sample.

MATERIALS AND METHODS
Clinical samples
From January 2020 to December 2022, a total of 2506 CSF samples

from patients with headache, epilepsy and suspected encephalitis,
bacterial/viral/tuberculous meningitis, tuberculoma were collected

Table 1. Primer sets and thermal cycling conditions used for PCR

after routine microbiological testing from the Department of
Neuromicrobiology, National Institute of Mental Health and
Neurosciences (NIMHANS), Bangalore, India, which is a tertiary
care hospital for neurological disorders. Samples were stored at
—20°C until they were tested for PCR and cytokine measurements.
The patients’ e-records were reviewed to collect demographic
characteristics such as age, sex, symptomes, risk factors, clinical
history/diagnosis, CSF cell count, and serological status (IgG) for CT
and NCC. CSF samples from seven patients with normal-pressure
hydrocephalus with no evidence of infection or inflammation were
used as controls. The study was approved by the Institutional Ethical
Committee (IEC), NIMHANS (No. NIMHANS/IEC (BS & NS DIV.) 12th
meeting/2018).

Microbiological investigation for free-living amoeba

CSF samples were initially subjected to the following microscopic
investigations: cell count with trypan blue, Gram staining, and
Ziehl-Neelsen staining. All samples were cultured on blood agar
and McConkey agar (HiMedia) for aerobic bacteria, incubated at
37°C, and observed after 24 h. CSF samples were also cultured on
non-nutrient agar (NNA) plates coated with Escherichia coli. The
plates were sealed with parafilm, incubated at 37°C for five to seven
days, and observed under a microscope for amoebic trophozoites
and cysts (Khurana et al., 2012).

DNA extraction, species-specific 185 rRNA PCR, and sequencing to
detect neurotropic free-living amoebae

Genomic DNA was extracted from smear and culture-negative CSF
samples (n = 275) that were negative for bacterial, viral, fungal
etiologies using a column-based Nucleospin Tissue DNA extraction
kit (Macherey Nagel, Germany) according to the manufacturer’s
instructions. Briefly, the centrifuged deposits of CSF samples were
mixed with lysis buffer and proteinase K and incubated at 56°C for
1-3 h, followed by incubation at 70°C for 10 min after adding a second
lysis buffer. DNA was extracted with ethanol (99-100%), transferred
to the Nucleospin column, centrifuged, washed twice, eluted in kit
buffers, and stored at —20°C. The DNA concentration (260 nm) and
quality (ratio 260/280 nm) in each sample was measured using
NanoDrop (Thermo Scientific). PCR for Acanthamoeba species and
Naegleria fowleri was done using species-specific primers. The
primer sequences and the thermal cycling conditions used are
shown in Table 1.

Gene Primers Size in bp Thermal cycling conditions Reference
Acanthamoeba JDP1 5’-GGCCCAGATCGTTTACCGTGAA-3’ 500 94°Cfor5min _ da Rocha-Azevedo
18SrRNA JDP2 5’-TCTCACAAGCTGCTAGGGAGTCA-3’ 94°Cfor 1 min | 35 etal., 2009

55°C for 1 min | cycles

72°C for 1 min

72°C for 10 min~
Acanthamoeba F 900 5'-CCCAGATCGTTTACCGTGAA-3" 180 95°Cfor 2 min _ Qvarnstrom et al., 2005
18SrRNA R 1100 5°-TAAATATTAATGCCCCCAACTATCC-3" 95°C for 15 sec | 35

51°C for 30 sec | cycles

72°C for 30 sec

72°C for 10 min~
N. fowleri Fwl 5’-GTGAAAACCTTTTTTCCATTTACA-3’ 310 94°Cfor3min _ Panda et al., 2015
ITS-1 RV1 5’-AAATAAAAGATTGACCATTTGAAA-3’ 94°C for 30 sec | 35

47°C for 30 sec | cycles

72°C for 30 sec

72°Cfor 5min ~
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PCR was performed with 25 uM forward and reverse primers,
5-40 ng of DNA template, and 2x PCR Master Mix (DSS Takara
Bio India Pvt. Ltd.) in a 25-ul reaction mixture using a Veriti
thermal cycler (AB Applied Biosystems). A nested PCR was done
to amplify 18S rRNA for Acanthamoeba (500 bp and 180 bp). The
Acanthamoeba (4B) T4 strain isolated from water was used as a
positive control. For detecting N. fowleri DNA, ITS-1 PCR was done
to amplify a 320-bp fragment. A plasmid harboring the N. fowleri
ITS-1 region was used as a positive control. Gel electrophoresis was
performed on 1.5-2 % agarose gel with ethidium bromide, and
bands were visualized using the Gbox gel documentation system
(Syngene, India). PCR products from agarose gel were purified using
the Nucleospin Gel and PCR Clean-Up kit (Macherey Nagel, Germany)
and sent to Madauxin, Bangalore, Karnataka, India, for Sanger-based
sequencing in both directions. Identification was performed with
BLAST against eukaryotic nucleotide sequences archived in the
GenBank database (NCBI).

Cytokine measurement using the Luminex assay

The levels of inflammatory cytokines (IL-1f, IL-6, IL-8, IL-17A, IFNy,
and TNFa.) in CSF samples from GAE (n=2), CT (n=23), NCC(n=7),
and normal-pressure hydrocephalus (n = 7) patients were measured
using the Multiplex Suspension assay (BIO-RAD, USA) according to
the manufacturer’s instructions (Manglani et al., 2019). Briefly, 50 pl
of 1x magnetic coupled beads were added to a 96-well assay plate
and washed twice with wash buffer. Fifty microliters of standards
(eight, four-fold dilutions) and samples (diluted 1:2) were added to
the respective wells in duplicate and incubated on a shaker at 850
rpm for 30 min. After washing three times, 25 ul of a 1x biotinylated
detection antibody mixture was added for 30 min, and 50 ul of a
1x streptavidin-phycoerythrin was added for 10 min in sequential
steps and incubated on a shaker at 850 rpm for 30 min and 10 min,
respectively. After washing three times, the beads were suspended
in 125 pl of assay buffer and mixed on a shaker at 850 rpm for 30
sec. After calibrating and validating the Bio-Plex 200 system, the
standard values were entered in the Bio-Plex manager software. Fifty
events were captured for each sample using a gate setting of 5000
(low) and 25000 (high). A range of 0.3 to 60000 pg/ml recombinant
cytokines was used to establish standard curves, and the detection
limits of the assay for the cytokines were as follows:0.3 pg/ml for
IL-1$3, 0.36 pg/ml for IL-6, 0.92 pg/ml for IL-8, 2.85 pg/ml for IL-17A,
1.11 pg/ml for IFNy, and 3.81 pg/ml for TNFa..

Statistical analysis

The nonparametric Mann—-Whitney test in the SPSS program (IBM
SPSS Statistics 23.0) was used to perform statistical comparisons
of the level of cytokines between each of the infection groups and
the control group. A p value of <0.05 was considered significant.

RESULTS

Demographic characteristics

The median age of patients in the infection groups was 45 years
(range 26-70 years), and 72% (23/32) of them were males. The
median age of patients in the control group was 68 years (range 57-
76 years), and all were males. The major symptoms of patients with
GAE, NCC and CT were as follows: headache (n=14; 44%), seizures
(n=12; 38%), fever (n=11; 34%), vomiting (n=6; 19%), upper and
lower limb weakness, (n=5; 16%), altered sensorium (n=5; 16%),
and hemiparesis (n=5; 16%). Few others had disturbances in gait,
memory, speech, vision, and behavior. The major risk factors in these
patients were HIV (n=19; 59%), alcoholism (n=9; 28%), hypertension
and diabetes mellites (n=3 each; 9%) (Table 2).

Culture and molecular characteristics
The 2506 smear and culture-negative CSF samples were negative
for motile amoebae under the light microscope and for free-living
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amoeba on NNA plates. Of the 275 CSF samples screened for free-
living amoeba by PCR, only two were positive for Acanthamoeba
180-bp 18SrRNA, and one of these samples was PCR positive in the
brain biopsy sample as well (Figure 1). None of the CSF samples
tested was positive for N. fowleri DNA.

Elevated IL-6 and IL-8 levels in the infection groups

The control group showed fewer cells (0-2 cells/mm3) in CSF and
very low levels of all the cytokines tested compared to the infection
groups, with the exception of marginally higher levels of TNFa,
IL-6 and IL-8 in one subject. Significantly higher levels of IL-6 (p <
0.05) and IL-8 (p < 0.05) were observed in all three infection groups
compared to the control samples. In addition, TNFo levels were
significantly elevated (p < 0.05) in the GAE and NCC groups and
IL-17A (p < 0.05) in the GAE group compared to the control group
(Figure 2). The levels of INFy and IL-1f3 were very low in patients in
all the infection groups and did not differ significantly compared to
controls although there were individual patients in the CT and NCC
groups who had elevated levels of these cytokines. Two patients in
the GAE group (52-610 cells/mm3), three patients in the NCC group
(15-415 cells/mm?3), and six patients in the CT group (19-280 cells/
mm?3) had high CSF cell counts, which correlated with increased
levels of IL-6, IL-8, and TNFa.. However, four patients in NCC group
and 14 patients in the CT group had low CSF cell counts in spite of
having higher levels of at least one of these cytokines. In the CT
group, three patients with low cell count (0-5cells) showed very low
levels of IL-6 (4-11 pg/ml), TNFo. (0-6 pg/ml), and IL-8 (27-153 pg/
ml), like the control group (Table 2).

DISCUSSION

Persistent production of cytokines or their dysregulation leads
to the progression of CNS parasitic diseases from an acute to a
chronic phase with neuroinflammatory disorders (Mishra et al.,
2009). The elevation of cytokine levels is also an important marker
for neuroinflammation and cognitive and neurological sequalae
as has been shown in cerebral malaria cases (John et al., 2008;
Cuff et al., 2020). In this study, we examined six proinflammatory
cytokines in CSF samples of patients with GAE, NCC, and CT and
found increased levels of IL-8 in 28 (88%) patients, IL-6 in 25 (78%)
patients and TNFauin 17 (53%) patients compared to control subjects
suggesting that these three cytokines could be used as markers of
neuroinflammation in these neurotropic parasitic diseases.

Although the age of the control patients in our study was higher
than in the infection groups, similar levels of cytokines were shown in
normal individuals who were under 45 years old and those who were
over 65 years old, indicating that age does not influence cytokine
production (Kim et al., 2011). Similar to the present study, in which
77% of the study subjects were males, others have reported higher
numbers of male subjects in their studies, despite females being
more prone to inflammatory diseases (Kashyap et al., 2012; Cavellani
et al., 2012; Arce-Sillas et al., 2018). In this study, increased levels
of cytokines in more than half of the patients did not correlate with
CSF cellularity. CSF cell count is generally shown to be an unreliable
predictor of the degree of cytokine elevations in CSF (Harrison et
al., 2021).

Only two of the 275 samples screened for neurotropic free-
living amoebae by PCR showed Acanthamoeba 18S rRNA in this
study, but they were negative on NNA plates. This could be due
to the low number of protozoans in the sample, or they may be
nonviable. The PCR finding of Acanthamoeba 18S rRNA correlated
with neuroimaging and pathology reports. Currently, PCR is used
to identify Acanthamoeba DNA in CSF and has been considered
an alternative to conventional methods (Qvarnstrom et al., 2005).
Absence of N. fowleri, which causes fulminant primary amoebic
meningoencephalitis in culture and PCR could be due to tertiary
nature of the hospital. The increased serum levels of anti-toxoplasma
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Figure 1. CSF sample showing Acanthamoeba 18S rRNA (180 bp) fragment. Lanel: DNA 100bp ladder; Lane 2: CSF sample 1594;
Lane 3: N. fowleri ITS plasmid (320bp); Lane 4: Negative control; Lane 6: CSF sample 1594; Lane 7: Acanthamoeba T4 strain (500 bp);
Lane 8: Negative control; Lane 10: CSF sample 1594 (180 bp); Lane 11: Acanthamoeba T4 strain (180 bp); Lane 12: Negative control.
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Figure 2. CSF levels of proinflammatory cytokines in patients with neurotropic parasitic infections and controls. GAE: Granulomatous
amoebic meningoencephalitis; NCC: Neurocysticercosis; CT cerebral toxoplasmosis. * The P value shows the difference between

patients and controls, as calculated by the Mann-Whitney U test.
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1gG are characteristic of the active or reactivation phase of CT (Torrey
etal., 2007). The presence of T. gondii 1gG antibody correlated with
imaging reports in 70% (16/23) of patients in this study. HIV was
found to the single most risk factor in Toxoplasma IgG positive patient
(78%) that might have predisposed them to CT (Table 2). In this
study, five of the seven patients’ neuroimaging findings correlated
with cysticercal 1gG antibody. Although antibody detection does
not distinguish between exposure, inactive infection, and active
infection in NCC, individuals with multiple viable cysts are shown
to be consistently seropositive, and the antibody level increases
significantly in patients treated with anti-cysticidal drugs (Garcia et
al., 2020). Therefore, in addition to imaging techniques, cytokine
profiling might help to learn about the stage of the parasitic diseases.

The two patients in the GAE group had increased CSF cell counts,
and the levels of IL-6, IL-8, TNFa, and IL-17A were significantly
elevated compared to controls. There are no reports on the CNS
cytokine profiles of patients with GAE during the chronic stage of
the disease. However, it has been shown in vitro that cocultures of
human monocytes and macrophages with A. castellanii trophozoites
released proinflammatory cytokines (IL-6, IL-8, IL-12, and TNFa.)
that could play a role in the development of the inflammatory
response in GAE (Mattana et al., 2016). The brains of SJIL mice
infected with A. castellanii showed inflammatory cell infiltrate with
the predominance of IFNy producing CD4 T cells (Massilamany et
al., 2014). Rat microglial cells and murine bone marrow-derived
macrophages cocultured with A. culbertsoni trophozoites showed
increased levels of TNFa, and IL-6 (Shin et al., 2001; Cano et al.,
2017). These studies show that proinflammatory cytokines are
produced immediately after Acathamoeba infection in vivo and in
vitro, and their presence during the chronic phase could lead to
immunopathology.

Six out of seven patients in the NCC group in this study showed
elevated levels of IL-8, IL-6, or TNFaw compared to control subjects.
Children with active NCC showed higher IL-6 and TNFa levels in
CSF compared to children with inactive (calcified lesions) forms
(Aguilar-Rebolledo et al., 2001; Kashyap et al., 2012). Additionally,
in adult patients with NCC, higher levels of IL-6 were detected in
CSF from patients with high cerebral blood flow velocity, which is
associated with disease severity (Gdngora-Rivera et al., 2008; Sdenz
et al., 2012). The increased levels of proinflammatory cytokines
in NCC have been shown to decrease after cure or in treatment-
resistant patients (Arce-Sillas et al., 2018; Harrison et al., 2021). In
vitro studies have also shown upregulation of IL-8 in monocytes in
response to T. solium antigens (Uddin et al., 2010). Rats inoculated
with T. solium showed increased expression of genes associated
with proinflammatory cytokines such as IL-1a, IL-1f, IL-6, IFNy, TNFou
and fibrosis-related proteins including collagen, fibronectin, TGF-f3,
and arginase in the tissue surrounding the cyst compared to the
noninfected tissue, which together may mediate the chronic state of
infection (Carmen-Orozco et al., 2021). Similar to this study, others
have shown low levels of IL-17A, IFNy, and TNFa in NCC patients
(Adalid-Peralta et al., 2012; Harrison et al., 2021).

In this study, significantly increased levels of IL-6 and IL-8 were
shown in CT patients compared to controls. The levels of TNFa
were elevated in ten CT patients and IFNy in one patient. Increased
levels of IL-6, IL-8, TNFa., and lymphocyte proliferation were shown
in congenitally infected children and their transmitting mothers,
suggesting that dysregulated, increased inflammatory responses
are related to vertical transmission of T. gondii in humans (Gémez-
Chavez et al., 2020). IFNy levels have been shown to be higher in
asymptomatic individuals than in patients with CT, indicating that
this cytokine tended to be higher in individuals whose infections
were resolved (Hernandez-de-los-Rios et al., 2019). It has been
shown in several animal studies that both IFNy and TNFa and
their mRNA expression are significantly elevated in response to T.
gondii infection during the acute phase, and the levels declined to
background levels during chronic stages of TE, similar to NCC (Aviles
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et al., 2008; Moura et al., 2016; Tuladhar et al., 2019). The levels
of IL1f and IL17A were low in CT patients in this study. It has been
shown that IL-27 produced by astrocytes regulates inflammation in
the CNS during TE by limiting Th-17 cell activity (Stumhofer et al.,
2006). Therefore, only a few CD4+ IL-17-expressing lymphocytes are
seen during the chronic stage of T. gondii infection in C57BL/6 mice
(Drogemdiller et al., 2008).

Unlike Acanthamoeba, both T. gondii and T. solium initially
coexist with the human host. However, during later stages,
reactivation results in heightened immune response and associated
symptoms that require medical management. Treatment for
neuroinflammation caused by parasitic infections involves the use
of drugs to kill the parasites and reduce inflammation. Currently,
steroids are used to the suppress immune system. However, their
use is associated with significant side effects and sustained parasite
viability (Garcia et al., 2020). Regulation of cytokines by targeted
immunomodulatory therapies may be a better option to prevent
complications associated with GAE, CT, and NCC. Several molecules,
namely, monoclonal antibodies (anti-TNFa. inhibitor, etanercept),
somatostatin analogues, nonspecific MMP inhibitor (doxycycline),
aptamers, and Inonotus obliquus polysaccharide showed promise
in experimental systems in the control of parasitic inflammatory
responses (Khumbatta et al., 2014; Boshtam et al., 2017; Mahanty
etal.,2017; Yan et al., 2021). Interestingly, patients who respond to
anti-helminthic drugs show upregulation of several genes involved
in pro- and anti-inflammatory and immunomodulatory functions,
indicating that a pro-inflammatory environment is related to
treatment responsiveness and some of them may have a role in
neuroprotection (John et al., 2008; Cardenas et al., 2014; Arce-
Sillas et al., 2018). Prevention of neurotropic parasitic diseases
can be achieved by immunization/vaccination when available and
eradication of parasitic infections by proper sanitation, use of cooked
meat, and safe food handling (Hill & Dubey, 2002).

Although the number of patients in each group was small in this
study, the increased levels of IL-8, IL-6 and TNFa in majority of the
patients show that these three cytokines could be used as markers
of neuroinflammation in GAE, NCC, and CT. Testing a larger cohort
of patients with CNS parasitic infection will help to confirm this
observation. Because IL-1 is secreted in its inactive form, measuring
pro-IL-1f3 levels or intracellular staining by flow cytometric analysis
might give a more accurate result (Palomo et al., 2015; Hernandez-
de-los-Rios et al., 2019). The absence of the measured cytokinesin a
few patients could also be due to polymorphisms in cytokine-coding
genes (Herndndez-de-los-Rios et al., 2019).

CONCLUSION

Of the 275 samples screened for neurotropic free-living amoebae
by PCR, only two samples showed Acanthamoeba 18S rRNA.
None of the CSF samples tested was positive for N. fowleri DNA.
The increased levels of IL-8 in 28 (88%) patients, IL-6 in 25 (78%)
patients, and TNFa. in 17 (53%) patients, with high CSF cellularity
in 11 patients, show that these three cytokines could be used as
markers of neuroinflammation in GAE, NCC, and CT. Quantifying
these cytokine levels in CSF might help with understanding the level
of neuroinflammation in patients with neurotropic parasitic diseases.
Further studies with clinico-microbiological correlation in the form
of reduction of cytokine levels with treatment and the correlation
with neurological deficits are needed.
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