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The pathogenesis of chronic parasitic central nervous system (CNS) infections, including granulomatous 
amoebic meningoencephalitis (GAE), cerebral toxoplasmosis (CT), and neurocysticercosis (NCC), is 
primarily due to an inflammatory host reaction to the parasite. Inflammatory cytokines produced by 
invading T cells, monocytes, and CNS resident cells lead to neuroinflammation which underlie the 
immunopathology of these infections. Immune molecules, especially cytokines, can therefore emerge 
as potential biomarker(s) of CNS parasitic infections. In this study, cerebral spinal fluid (CSF) samples 
from suspected patients with parasitic infections were screened for pathogenic free-living amoebae by 
culture (n=2506) and PCR (n=275). Six proinflammatory cytokines in smear and culture-negative CSF 
samples from patients with GAE (n = 2), NCC (n = 7), and CT (n = 23) as well as control (n = 7) patients 
were measured using the Multiplex Suspension assay. None of the CSF samples tested was positive for 
neurotropic free-living amoebae by culture and only two samples showed Acanthamoeba 18S rRNA by 
PCR. Of the six cytokines measured, only IL-6 and IL-8 were significantly increased in all three infection 
groups compared to the control group. In addition, TNFa levels were higher in the GAE and NCC groups 
and IL-17 in the GAE group compared to controls. The levels of IL-1b and IFNg were very low in all the 
infection groups and the control group. There was a correlation between CSF cellularity and increased 
levels of IL-6, IL-8, and TNFa in 11 patients. Thus, quantifying inflammatory cytokine levels in CSF might 
help with understanding the level of neuroinflammation in patients with neurotropic parasitic diseases. 
Further studies with clinico-microbiological correlation in the form of reduction of cytokine levels with 
treatment and the correlation with neurological deficits are needed.

Keywords: Cytokines; multiplex suspension assay; Granulomatous amoebic encephalitis; 
Neurocysticercosis; Cerebral toxoplasmosis.

INTRODUCTION

Chronic parasitic central nervous system (CNS) infections such 
as granulomatous amoebic meningoencephalitis (GAE), cerebral 
toxoplasmosis (CT), and neurocysticercosis (NCC), continue to be 
a health problem, particularly in developing countries (Prandota, 
2010; Del Brutto & Garcia, 2021; Raju et al., 2022). The persistence 
of inflammatory processes in GAE and CT, or loss of active immune 
suppression in NCC, results in parenchymal tissue damage, with 
severe neurological consequences (Mishra et al., 2009; Kot et 
al., 2021). The pathogenesis of these diseases is primarily due 
to an inflammatory host reaction to the parasite, resulting in 
symptoms such as headache, migraine, nausea, vomiting, fever, 
intracranial hypertension, hydrocephalus, ischemia, epileptic 
seizures, schizophrenia, stroke, focal neurologic deficits, and altered 
sensorium, in addition to physical obstruction of the flow of cerebral 

spinal fluid (CSF) (Prandota, 2010; Del Brutto et al., 2016; Kot et 
al., 2021).
	 Prior exposure to Acanthamoeba antigens and the inability 
of macrophages to phagocytize larger trophozoites result in a 
hypersensitivity reaction that develops into a granulomatous 
inflammatory lesion with epithelioid cells and pathogenic T cells that 
may cause substantial tissue destruction in GAE (Baig et al., 2015; 
Kot et al., 2021). In NCC, the Taenia solium larva in its vesicular stage 
lives for several years by blocking the complement system, increasing 
regulatory T cells, and degrading immunoglobulins, resulting in an 
anti-inflammatory phase that is asymptomatic (Del Brutto et al., 
2016). The destruction of larvae by therapeutic treatment or by 
natural degeneration causes acute or subacute inflammation to 
colloidal and granular stages or a chronic inflammatory response 
to the calcified parasite, which is responsible for the severe 
neuropathology (Garcia et al., 2020). Toxoplasma gondii establishes 
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intracellular cysts in the brain in almost one third of the world’s 
population and is asymptomatic in healthy adults (Carruthers & 
Suzuki, 2007). An imbalance between proinflammatory and anti-
inflammatory cytokines, the administration of drugs for some 
diseases, or decreased T cell influx into the CNS due to AIDS or 
chemotherapy may result in the reactivation of latent CT and the 
development of toxoplasma encephalitis (TE), which is characterized 
by cyst rupture, tachyzoite conversion, and parasite replication 
within the CNS (Prandota, 2010).
	 Neuroinflammation during infection is driven by cytokines 
produced by invading T cells and monocytes, resident astrocytes, 
and microglia (Becher et al., 2017). Pro-inflammatory cytokines such 
as IL-1b, IL-6, IL-8, and TNFa are primarily produced by monocytes/
macrophages but also by other cells. IFNg is produced by activated 
T cells, and IL-17A is produced by a subset of CD4 cells called T 
helper 17 (Th17) cells (Borish & Steinke, 2003; Becher et al., 2017). 
In addition to their unique functions in cellular influx and leucocyte 
activation for pathogen clearance, these inflammatory cytokines 
secreted locally in the inflamed CNS act on T cells and macrophages 
to maintain their pathogenic properties in the presence of parasitic 
antigens and counteract the natural tendency for resolution of the 
immune response (Becher et al., 2017). Increased levels of some of 
the cytokines were shown to be an indicator of neuroinflammation 
and long-term neurologic and cognitive impairment; hence, 
quantifying them in the CSF of patients with GAE, NCC, and CT 
can provide valuable information about patients’ immune status 
(Shabani et al., 2017; Cuff et al., 2020). Currently, there are no 
published reports on CNS proinflammatory cytokine profiles in 
patients with GAE and only few reports exist on CSF cytokine profiles 
in patients with NCC and CT (Kashyap et al., 2012; Verma et al., 2011). 
In this study, the levels of six proinflammatory cytokines (IL-1b, 
IL-6, IL-8, IL17A, IFNg and TNFa) that are considered important in 
neurotropic parasitic diseases were measured in smear and culture-
negative CSF samples from patients with GAE, NCC, and CT using 
the Multiplex Suspension assay which has the capacity to detect 
and quantify multiple cytokines simultaneously in the same sample.

MATERIALS AND METHODS

Clinical samples
From January 2020 to December 2022, a total of 2506 CSF samples 
from patients with headache, epilepsy and suspected encephalitis, 
bacterial/viral/tuberculous meningitis, tuberculoma were collected 

after routine microbiological testing from the Department of 
Neuromicrobiology, National Institute of Mental Health and 
Neurosciences (NIMHANS), Bangalore, India, which is a tertiary 
care hospital for neurological disorders. Samples were stored at 
–20°C until they were tested for PCR and cytokine measurements. 
The patients’ e-records were reviewed to collect demographic 
characteristics such as age, sex, symptoms, risk factors, clinical 
history/diagnosis, CSF cell count, and serological status (IgG) for CT 
and NCC. CSF samples from seven patients with normal-pressure 
hydrocephalus with no evidence of infection or inflammation were 
used as controls. The study was approved by the Institutional Ethical 
Committee (IEC), NIMHANS (No. NIMHANS/IEC (BS & NS DIV.) 12th 
meeting/2018).

Microbiological investigation for free-living amoeba
CSF samples were initially subjected to the following microscopic 
investigations: cell count with trypan blue, Gram staining, and 
Ziehl-Neelsen staining. All samples were cultured on blood agar 
and McConkey agar (HiMedia) for aerobic bacteria, incubated at 
37°C, and observed after 24 h. CSF samples were also cultured on 
non-nutrient agar (NNA) plates coated with Escherichia coli. The 
plates were sealed with parafilm, incubated at 37°C for five to seven 
days, and observed under a microscope for amoebic trophozoites 
and cysts (Khurana et al., 2012).

DNA extraction, species-specific 18S rRNA PCR, and sequencing to 
detect neurotropic free-living amoebae
Genomic DNA was extracted from smear and culture-negative CSF 
samples (n = 275) that were negative for bacterial, viral, fungal 
etiologies using a column-based Nucleospin Tissue DNA extraction 
kit (Macherey Nagel, Germany) according to the manufacturer’s 
instructions. Briefly, the centrifuged deposits of CSF samples were 
mixed with lysis buffer and proteinase K and incubated at 56°C for 
1-3 h, followed by incubation at 70°C for 10 min after adding a second 
lysis buffer. DNA was extracted with ethanol (99-100%), transferred 
to the Nucleospin column, centrifuged, washed twice, eluted in kit 
buffers, and stored at –20°C. The DNA concentration (260 nm) and 
quality (ratio 260/280 nm) in each sample was measured using 
NanoDrop (Thermo Scientific). PCR for Acanthamoeba species and 
Naegleria fowleri was done using species-specific primers. The 
primer sequences and the thermal cycling conditions used are 
shown in Table 1.

Gene

Acanthamoeba
18SrRNA

Acanthamoeba
18SrRNA 

N. fowleri
ITS-1 

Primers

JDP1 5’-GGCCCAGATCGTTTACCGTGAA-3’
JDP2 5’-TCTCACAAGCTGCTAGGGAGTCA-3’

F 900 5´-CCCAGATCGTTTACCGTGAA-3´
R 1100 5´-TAAATATTAATGCCCCCAACTATCC-3´

Fwl 5’-GTGAAAACCTTTTTTCCATTTACA-3’
RV1 5’-AAATAAAAGATTGACCATTTGAAA-3’

Reference

da Rocha-Azevedo
et al., 2009

Qvarnstrom et al., 2005

Panda et al., 2015

Thermal cycling conditions

94°C for 5 min
94°C for 1 min	 35
55°C for 1 min	 cycles
72°C for 1 min
72°C for 10 min

95°C for 2 min
95°C for 15 sec	 35
51°C for 30 sec	 cycles
72°C for 30 sec
72°C for 10 min

94°C for 3 min
94°C for 30 sec	 35
47°C for 30 sec	 cycles
72°C for 30 sec
72°C for 5 min

Size in bp

500

180 

310

Table 1. Primer sets and thermal cycling conditions used for PCR
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	 PCR was performed with 25 µM forward and reverse primers, 
5-40 ng of DNA template, and 2× PCR Master Mix (DSS Takara 
Bio India Pvt. Ltd.) in a 25-µl reaction mixture using a Veriti 
thermal cycler (AB Applied Biosystems). A nested PCR was done 
to amplify 18S rRNA for Acanthamoeba (500 bp and 180 bp). The 
Acanthamoeba (4B) T4 strain isolated from water was used as a 
positive control. For detecting N. fowleri DNA, ITS-1 PCR was done 
to amplify a 320-bp fragment. A plasmid harboring the N. fowleri 
ITS-1 region was used as a positive control. Gel electrophoresis was 
performed on 1.5–2 % agarose gel with ethidium bromide, and 
bands were visualized using the Gbox gel documentation system 
(Syngene, India). PCR products from agarose gel were purified using 
the Nucleospin Gel and PCR Clean-Up kit (Macherey Nagel, Germany) 
and sent to Madauxin, Bangalore, Karnataka, India, for Sanger-based 
sequencing in both directions. Identification was performed with 
BLAST against eukaryotic nucleotide sequences archived in the 
GenBank database (NCBI).

Cytokine measurement using the Luminex assay 
The levels of inflammatory cytokines (IL-1b, IL-6, IL-8, IL-17A, IFNg, 
and TNFa) in CSF samples from GAE (n = 2), CT (n = 23), NCC (n = 7), 
and normal-pressure hydrocephalus (n = 7) patients were measured 
using the Multiplex Suspension assay (BIO-RAD, USA) according to 
the manufacturer’s instructions (Manglani et al., 2019). Briefly, 50 µl 
of 1× magnetic coupled beads were added to a 96-well assay plate 
and washed twice with wash buffer. Fifty microliters of standards 
(eight, four-fold dilutions) and samples (diluted 1:2) were added to 
the respective wells in duplicate and incubated on a shaker at 850 
rpm for 30 min. After washing three times, 25 µl of a 1× biotinylated 
detection antibody mixture was added for 30 min, and 50 µl of a 
1× streptavidin-phycoerythrin was added for 10 min in sequential 
steps and incubated on a shaker at 850 rpm for 30 min and 10 min, 
respectively. After washing three times, the beads were suspended 
in 125 µl of assay buffer and mixed on a shaker at 850 rpm for 30 
sec. After calibrating and validating the Bio-Plex 200 system, the 
standard values were entered in the Bio-Plex manager software. Fifty 
events were captured for each sample using a gate setting of 5000 
(low) and 25000 (high). A range of 0.3 to 60000 pg/ml recombinant 
cytokines was used to establish standard curves, and the detection 
limits of the assay for the cytokines were as follows:0.3 pg/ml for 
IL-1b, 0.36 pg/ml for IL-6, 0.92 pg/ml for IL-8, 2.85 pg/ml for IL-17A, 
1.11 pg/ml for IFNg, and 3.81 pg/ml for TNFa.

Statistical analysis
The nonparametric Mann–Whitney test in the SPSS program (IBM 
SPSS Statistics 23.0) was used to perform statistical comparisons 
of the level of cytokines between each of the infection groups and 
the control group. A p value of <0.05 was considered significant.

RESULTS

Demographic characteristics
The median age of patients in the infection groups was 45 years 
(range 26-70 years), and 72% (23/32) of them were males. The 
median age of patients in the control group was 68 years (range 57-
76 years), and all were males. The major symptoms of patients with 
GAE, NCC and CT were as follows: headache (n=14; 44%), seizures 
(n=12; 38%), fever (n=11; 34%), vomiting (n=6; 19%), upper and 
lower limb weakness, (n=5; 16%), altered sensorium (n=5; 16%), 
and hemiparesis (n=5; 16%). Few others had disturbances in gait, 
memory, speech, vision, and behavior. The major risk factors in these 
patients were HIV (n=19; 59%), alcoholism (n=9; 28%), hypertension 
and diabetes mellites (n=3 each; 9%) (Table 2).

Culture and molecular characteristics
The 2506 smear and culture-negative CSF samples were negative 
for motile amoebae under the light microscope and for free-living 

amoeba on NNA plates. Of the 275 CSF samples screened for free-
living amoeba by PCR, only two were positive for Acanthamoeba 
180-bp 18SrRNA, and one of these samples was PCR positive in the 
brain biopsy sample as well (Figure 1). None of the CSF samples 
tested was positive for N. fowleri DNA.

Elevated IL-6 and IL-8 levels in the infection groups
The control group showed fewer cells (0-2 cells/mm3) in CSF and 
very low levels of all the cytokines tested compared to the infection 
groups, with the exception of marginally higher levels of TNFa, 
IL-6 and IL-8 in one subject. Significantly higher levels of IL-6 (p < 
0.05) and IL-8 (p < 0.05) were observed in all three infection groups 
compared to the control samples. In addition, TNFa levels were 
significantly elevated (p < 0.05) in the GAE and NCC groups and 
IL-17A (p < 0.05) in the GAE group compared to the control group 
(Figure 2). The levels of INFg and IL-1b were very low in patients in 
all the infection groups and did not differ significantly compared to 
controls although there were individual patients in the CT and NCC 
groups who had elevated levels of these cytokines. Two patients in 
the GAE group (52-610 cells/mm3), three patients in the NCC group 
(15-415 cells/mm3), and six patients in the CT group (19-280 cells/
mm3) had high CSF cell counts, which correlated with increased 
levels of IL-6, IL-8, and TNFa. However, four patients in NCC group 
and 14 patients in the CT group had low CSF cell counts in spite of 
having higher levels of at least one of these cytokines. In the CT 
group, three patients with low cell count (0-5cells) showed very low 
levels of IL-6 (4-11 pg/ml), TNFa (0-6 pg/ml), and IL-8 (27-153 pg/
ml), like the control group (Table 2).

DISCUSSION

Persistent production of cytokines or their dysregulation leads 
to the progression of CNS parasitic diseases from an acute to a 
chronic phase with neuroinflammatory disorders (Mishra et al., 
2009). The elevation of cytokine levels is also an important marker 
for neuroinflammation and cognitive and neurological sequalae 
as has been shown in cerebral malaria cases (John et al., 2008; 
Cuff et al., 2020). In this study, we examined six proinflammatory 
cytokines in CSF samples of patients with GAE, NCC, and CT and 
found increased levels of IL-8 in 28 (88%) patients, IL-6 in 25 (78%) 
patients and TNFa in 17 (53%) patients compared to control subjects 
suggesting that these three cytokines could be used as markers of 
neuroinflammation in these neurotropic parasitic diseases.
	 Although the age of the control patients in our study was higher 
than in the infection groups, similar levels of cytokines were shown in 
normal individuals who were under 45 years old and those who were 
over 65 years old, indicating that age does not influence cytokine 
production (Kim et al., 2011). Similar to the present study, in which 
77% of the study subjects were males, others have reported higher 
numbers of male subjects in their studies, despite females being 
more prone to inflammatory diseases (Kashyap et al., 2012; Cavellani 
et al., 2012; Arce-Sillas et al., 2018). In this study, increased levels 
of cytokines in more than half of the patients did not correlate with 
CSF cellularity. CSF cell count is generally shown to be an unreliable 
predictor of the degree of cytokine elevations in CSF (Harrison et 
al., 2021).
	 Only two of the 275 samples screened for neurotropic free-
living amoebae by PCR showed Acanthamoeba 18S rRNA in this 
study, but they were negative on NNA plates. This could be due 
to the low number of protozoans in the sample, or they may be 
nonviable. The PCR finding of Acanthamoeba 18S rRNA correlated 
with neuroimaging and pathology reports. Currently, PCR is used 
to identify Acanthamoeba DNA in CSF and has been considered 
an alternative to conventional methods (Qvarnstrom et al., 2005). 
Absence of N. fowleri, which causes fulminant primary amoebic 
meningoencephalitis in culture and PCR could be due to tertiary 
nature of the hospital. The increased serum levels of anti-toxoplasma 
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Figure 1. CSF sample showing Acanthamoeba 18S rRNA (180 bp) fragment. Lane1: DNA 100bp ladder; Lane 2: CSF sample 1594; 
Lane 3: N. fowleri ITS plasmid (320bp); Lane 4: Negative control; Lane 6: CSF sample 1594; Lane 7: Acanthamoeba T4 strain (500 bp); 
Lane 8: Negative control; Lane 10: CSF sample 1594 (180 bp); Lane 11: Acanthamoeba T4 strain (180 bp); Lane 12: Negative control.

Figure 2. CSF levels of proinflammatory cytokines in patients with neurotropic parasitic infections and controls. GAE: Granulomatous 
amoebic meningoencephalitis; NCC: Neurocysticercosis; CT cerebral toxoplasmosis. * The P value shows the difference between 
patients and controls, as calculated by the Mann-Whitney U test.
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IgG are characteristic of the active or reactivation phase of CT (Torrey 
et al., 2007). The presence of T. gondii IgG antibody correlated with 
imaging reports in 70% (16/23) of patients in this study.  HIV was 
found to the single most risk factor in Toxoplasma IgG positive patient 
(78%) that might have predisposed them to CT (Table 2). In this 
study, five of the seven patients’ neuroimaging findings correlated 
with cysticercal IgG antibody. Although antibody detection does 
not distinguish between exposure, inactive infection, and active 
infection in NCC, individuals with multiple viable cysts are shown 
to be consistently seropositive, and the antibody level increases 
significantly in patients treated with anti-cysticidal drugs (Garcia et 
al., 2020). Therefore, in addition to imaging techniques, cytokine 
profiling might help to learn about the stage of the parasitic diseases.
	 The two patients in the GAE group had increased CSF cell counts, 
and the levels of IL-6, IL-8, TNFa, and IL-17A were significantly 
elevated compared to controls. There are no reports on the CNS 
cytokine profiles of patients with GAE during the chronic stage of 
the disease. However, it has been shown in vitro that cocultures of 
human monocytes and macrophages with A. castellanii trophozoites 
released proinflammatory cytokines (IL-6, IL-8, IL-12, and TNFa) 
that could play a role in the development of the inflammatory 
response in GAE (Mattana et al., 2016). The brains of SJL mice 
infected with A. castellanii showed inflammatory cell infiltrate with 
the predominance of IFNg producing CD4 T cells (Massilamany et 
al., 2014). Rat microglial cells and murine bone marrow-derived 
macrophages cocultured with A. culbertsoni trophozoites showed 
increased levels of TNFa and IL-6 (Shin et al., 2001; Cano et al., 
2017). These studies show that proinflammatory cytokines are 
produced immediately after Acathamoeba infection in vivo and in 
vitro, and their presence during the chronic phase could lead to 
immunopathology.
	 Six out of seven patients in the NCC group in this study showed 
elevated levels of IL-8, IL-6, or TNFa compared to control subjects. 
Children with active NCC showed higher IL-6 and TNFa levels in 
CSF compared to children with inactive (calcified lesions) forms 
(Aguilar-Rebolledo et al., 2001; Kashyap et al., 2012). Additionally, 
in adult patients with NCC, higher levels of IL-6 were detected in 
CSF from patients with high cerebral blood flow velocity, which is 
associated with disease severity (Góngora-Rivera et al., 2008; Sáenz 
et al., 2012). The increased levels of proinflammatory cytokines 
in NCC have been shown to decrease after cure or in treatment-
resistant patients (Arce-Sillas et al., 2018; Harrison et al., 2021). In 
vitro studies have also shown upregulation of IL-8 in monocytes in 
response to T. solium antigens (Uddin et al., 2010). Rats inoculated 
with T. solium showed increased expression of genes associated 
with proinflammatory cytokines such as IL-1a, IL-1b, IL-6, IFNg, TNFa 
and fibrosis-related proteins including collagen, fibronectin, TGF-b, 
and arginase in the tissue surrounding the cyst compared to the 
noninfected tissue, which together may mediate the chronic state of 
infection (Carmen-Orozco et al., 2021). Similar to this study, others 
have shown low levels of IL-17A, IFNg, and TNFa in NCC patients 
(Adalid-Peralta et al., 2012; Harrison et al., 2021).
	 In this study, significantly increased levels of IL-6 and IL-8 were 
shown in CT patients compared to controls. The levels of TNFa 
were elevated in ten CT patients and IFNg in one patient. Increased 
levels of IL-6, IL-8, TNFa, and lymphocyte proliferation were shown 
in congenitally infected children and their transmitting mothers, 
suggesting that dysregulated, increased inflammatory responses 
are related to vertical transmission of T. gondii in humans (Gómez-
Chávez et al., 2020). IFNg levels have been shown to be higher in 
asymptomatic individuals than in patients with CT, indicating that 
this cytokine tended to be higher in individuals whose infections 
were resolved (Hernández-de-los-Ríos et al., 2019). It has been 
shown in several animal studies that both IFNg and TNFa and 
their mRNA expression are significantly elevated in response to T. 
gondii infection during the acute phase, and the levels declined to 
background levels during chronic stages of TE, similar to NCC (Aviles 

et al., 2008; Moura et al., 2016; Tuladhar et al., 2019). The levels 
of IL1b and IL17A were low in CT patients in this study. It has been 
shown that IL-27 produced by astrocytes regulates inflammation in 
the CNS during TE by limiting Th-17 cell activity (Stumhofer et al., 
2006). Therefore, only a few CD4+ IL-17-expressing lymphocytes are 
seen during the chronic stage of T. gondii infection in C57BL/6 mice 
(Drögemüller et al., 2008).
	 Unlike Acanthamoeba, both T. gondii and T. solium initially 
coexist with the human host. However, during later stages, 
reactivation results in heightened immune response and associated 
symptoms that require medical management. Treatment for 
neuroinflammation caused by parasitic infections involves the use 
of drugs to kill the parasites and reduce inflammation. Currently, 
steroids are used to the suppress immune system. However, their 
use is associated with significant side effects and sustained parasite 
viability (Garcia et al., 2020). Regulation of cytokines by targeted 
immunomodulatory therapies may be a better option to prevent 
complications associated with GAE, CT, and NCC. Several molecules, 
namely, monoclonal antibodies (anti-TNFa inhibitor, etanercept), 
somatostatin analogues, nonspecific MMP inhibitor (doxycycline), 
aptamers, and Inonotus obliquus polysaccharide showed promise 
in experimental systems in the control of parasitic inflammatory 
responses (Khumbatta et al., 2014; Boshtam et al., 2017; Mahanty 
et al., 2017; Yan et al., 2021). Interestingly, patients who respond to 
anti-helminthic drugs show upregulation of several genes involved 
in pro- and anti-inflammatory and immunomodulatory functions, 
indicating that a pro-inflammatory environment is related to 
treatment responsiveness and some of them may have a role in 
neuroprotection (John et al., 2008; Cárdenas et al., 2014; Arce-
Sillas et al., 2018). Prevention of neurotropic parasitic diseases 
can be achieved by immunization/vaccination when available and 
eradication of parasitic infections by proper sanitation, use of cooked 
meat, and safe food handling (Hill & Dubey, 2002).
	 Although the number of patients in each group was small in this 
study, the increased levels of IL-8, IL-6 and TNFa in majority of the 
patients show that these three cytokines could be used as markers 
of neuroinflammation in GAE, NCC, and CT. Testing a larger cohort 
of patients with CNS parasitic infection will help to confirm this 
observation. Because IL-1b is secreted in its inactive form, measuring 
pro-IL-1b levels or intracellular staining by flow cytometric analysis 
might give a more accurate result (Palomo et al., 2015; Hernández-
de-los-Ríos et al., 2019). The absence of the measured cytokines in a 
few patients could also be due to polymorphisms in cytokine-coding 
genes (Hernández-de-los-Ríos et al., 2019).

CONCLUSION

Of the 275 samples screened for neurotropic free-living amoebae 
by PCR, only two samples showed Acanthamoeba 18S rRNA. 
None of the CSF samples tested was positive for N. fowleri DNA. 
The increased levels of IL-8 in 28 (88%) patients, IL-6 in 25 (78%) 
patients, and TNFa in 17 (53%) patients, with high CSF cellularity 
in 11 patients, show that these three cytokines could be used as 
markers of neuroinflammation in GAE, NCC, and CT. Quantifying 
these cytokine levels in CSF might help with understanding the level 
of neuroinflammation in patients with neurotropic parasitic diseases. 
Further studies with clinico-microbiological correlation in the form 
of reduction of cytokine levels with treatment and the correlation 
with neurological deficits are needed.
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